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Applying population-flow-based spatial weight matrix in spatial

econometric models: conceptual framework and application to COVID-19

transmission analysis

Abstract

This paper proposes a novel method for constructing an asymmetric spatial weight
matrix and applies it to improve spatial econometric modeling. As opposed to
traditional spatial weight matrices that simply consider geographic or economic
proximity, the spatial weight matrix proposed in this study is based on large-volume
daily population flow data. It can more accurately reflect the socio-economic
interactions between cities over any given period. To empirically test the validity and
accuracy of this proposed spatial weight matrix, we apply it to a spatial econometric
model that analyzes COVID-19 transmission in Mainland China. Specifically, this
matrix is used to address spatial dependence in outcome and explanatory variables, and
to calculate the direct and indirect effects of all predictors. We also propose a practical
framework that combines Instrumental Variable regressions and a Hausman test to
validate the exogeneity of this matrix. The test result confirms its exogeneity, hence it
can produce consistent estimates in our spatial econometric models. ~ Moreover, we
find that spatial econometric models using our proposed population-flow-based spatial
weight matrix significantly outperform those using the traditional inverse distance
weight matrix in terms of goodness-of-fit and model interpretation, thus providing
more reliable results. Our methodology not only has implications for national epidemic
control and prevention policies but can also be applied to a wide range of research to

better address spatial autocorrelation issues.
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1. Introduction

Many phenomena in the real-world are spatially dependent. For example, economic
development, meteorological conditions, air pollution and the spread of diseases between
neighboring regions may correlate or interact with each other to a greater or lesser extent.
Traditional econometric models assume the spatial dependence or spatial spillovers between
research units to be zero, which may generate biased estimates of regression coefficients
(Vega and Elhorst 2013). To empirically assess the magnitude and significance of the spatial
dependence or spatial spillover effects, spatial econometric models have been widely used
(LeSage 2008; ; Vega and Elhorst 2013). The interactions between spatial units in spatial
econometric models are reflected through a spatial weight matrix (SWM), a square matrix of
size N*N, with N being the number of research units being modeled. SWMs have played a
vital role in deriving accurate models and estimates (Chen 2021). However, it is often
challenging to select and construct an appropriate SWM that accurately reflects the spatial
correlation and interactions between research units (Seya, Yamagata, and Tsutsumi 2013;
Lam, and Souza 2020).

Traditional forms of spatial weight matrices include contiguity-based SWM (Cliff and
Ord 1975), inverse-distance-based SWM (Anselin 2001), economically-based SWM (Conley
and Ligon 2002) and nested SWM that combined both geographic and economic distances
(Fingleton and Le Gallo 2008). The contiguity-based SWM remains one of the most popular
spatial weight matrices (Getis 2009). Although the contiguity-based SWM is relatively easy

to build, it ignores the varying degrees of interactions among neighboring units. The
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inverse-distance-based SWM assumes that the intensity of interactions depends on
geographic distance (Getis 2009). However, in many contexts, geographic proximity may not
fully reflect the relevant connections between spatial units. For instance, after Wuhan’s
COVID-19 lockdown in January 2020, a SWM based on geographic proximity is
inappropriate to capture the city’s actual connections with other cities. Furthermore, new
transportation technologies such as high-speed rail have changed the effective distance and
the frequency and intensity of interactions between two places in real space, altering the
strength and scope of spillover effects (Yu, Chen and Zhu,. 2012; Zhu et al. 2015; Cao and
Zhu, 2017; Ahlfeldt and Feddersen, 2018; Zhu, 2021). Another major limitation of these
traditional SWMs is the symmetric assumption of spatial spillover effects, which may deviate
from the actual spatial interaction processes. Therefore, more appropriate spatial weight
matrices that account for the real socio-economic interactions induced and amplified by
modern technological innovations (e.g., transportation, communication) are needed to better
reflect the spillovers between research units.

While most previous empirical studies focus on the application of spatial econometric
models, only a few studies have introduced new ways to construct spatial weight matrices to
better capture the underlying interaction process. For example, Case and Hines (1993) used
income and racial composition to describe the associations between states. Zhang et al. (2009)
proposed a co-movement SWM by accounting for the similarity of economic factors between
regions. Getis and Aldstadt (2004) constructed a SWM based on the  local statistic. Emch

et al. (2012) applied spatial proximity and social relationships separately to construct a SWM
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and compare the spatial clustering pattern of disease transmission based on the two types of
matrices. Taking into consideration the actual connections between spatial units, some studies
have introduced actual population flow (e.g., Kordi and Fotheringham 2016) or flow intensity
calculated based on GDP per capita and the number of people employed in different
industries in connected cities (Li 2017) into the SWM. However, the above studies have
mainly focused on the spatial interaction process itself. They do not apply their updated
SWMs to improve spatial econometric models and illustrate the spillover effects generated by
the spatial interaction processes.

The major contributions of this research, therefore, lie not only in constructing an
asymmetric SWM based on large-volume daily population flows between geographic units,
but more importantly, in applying the new SWM to improve spatial econometric modeling
and to provide more reliable estimates of the (direct and spillover) effects of key variables. In
the modeling of various social, economic, and health outcomes, a population-flow-based
SWM may better approximate the actual process of spatial interactions than traditional spatial
weight matrices using inverse distance or contiguity. This improved SWM also accounts for
potential asymmetric spatial spillover effects (i.e., spillover from A to B not equal to spillover
from B to A). This is consistent with the fact that the flows of people, goods, and information
between spatial units are likely to be asymmetrical due to geographical constraints (e.g., Xu
et al. 2016) or the uneven level of development between spatial units (e.g., Parent and LeSage
2006). In the empirical analysis of this paper, we construct the proposed SWM using

real-time population flow data and apply it in spatial econometric models to analyze the
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transmission of COVID-19 in Mainland China between January 11 and February 25, 2020
(excluding the two special administrative regions of Hong Kong and Macau and Taiwan
region). By comparing the results of our model with an Ordinary Least Squares (OLS) model
and spatial econometric model using inverse distance SWM, we find that the proposed model
provides more reliable results that may better inform policy for epidemic control and
prevention. In addition to application in infectious disease control, this methodology may also
be applicable in investigating a variety of spatial outcomes that depend on human contact
(e.g., economic, social, transportation, or public health studies).

The remainder of this article is structured as follows. Section 2 provides a brief
review of the literature on spatial econometrics as well as the specification of the SWM.
Section 3 introduces the construction process of the population-flow-based SWM. An
example of the application of the proposed SWM in spatial regression is presented in

Section 4 and conclusions are presented in the final section.

2. Literature review

Spatial econometrics was first proposed by Paelinck and Klaassen (1979) to improve
traditional econometric approaches by capturing the spatial dependence between observations
(Elhorst 2014). It has been widely used in fields such as transportation (e.g., Szabd, and
Torok 2020), environmental studies (e.g., Lv, Chen, and Cheng 2019), economics (e.g., J. Li,

and S. Li 2020), and public health (e.g., Ispriyanti, Prahutama, and Taryono 2018).


https://onlinelibrary.wiley.com/doi/full/10.1002/jae.981
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The construction of spatial weight matrices is the key to spatial econometric models.
SWMs are designed to reflect the interactions between spatial units (Kostov 2010) and may
take different forms depending on the rationales behind the scenes. The earliest form of the
SWM was the contiguity-based SWM (Getis 2009). This category of SWMs can be further
divided into first-order contiguity matrices and high-order contiguity matrices. First-order
contiguity matrices assume that spatial interactions only occur between spatial units sharing a
common border (first-order neighbors) and the strength of the interactions between all pairs
of first-order neighbors is the same (Getis 2009). High-order contiguity matrices are
constructed in a similar way. For example, if one unit is given, its second-order neighbors are
defined as the neighbors of its first-order neighbors, and so on. Although easy to implement,
the basic assumption of the contiguity-based approach that no variations exist in the degree of
interactions among neighbors of the same order is only a simplified measure of spatial
interactions in the real world. Another type of SWM is the inverse distance matrix, which
constructs spatial weights using the distance between pairs of observations (Perret 2011).
Following Tobler’s first law of geography (Tobler 1970), the underlying assumption of this
approach is that the intensity of spatial relations among observations decreases as the distance
between them increases. Most studies use the Euclidean distance between two spatial units to
calculate spatial weights (e.g., Lu and Zhang 2011; Lv, Chen, and Cheng 2019), while other
studies use alternative measures such as travel time (e.g., Conley and Topa 2002) or railway
network distance (e.g., Lv, Chen, and Cheng 2019) to capture the physical proximity or travel

costs between two units in the real world.
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With high residential mobility and the development of advanced communication
technologies in the modern world, geographic constraints have become weaker (Webber 1964;
Wellman and Leighton 1979; Snyder 1995), and the influence of physical distance on the
interactions among nodes in networks has declined (Conley and Topa 2002). To better
capture the diverse spatial interaction processes that are not constrained by physical distance,
some studies have used non-physical distance measures such as economic distance (Case et al.
1994; Pietrzak 2010), trade volumes (Aten 1997; Cohen and Paul 2004),
industrial structure proximity (Zhang, Chen and Wang 2009), social contacts (Conley and
Topa 2002) and social network/relationships (Emch et al. 2012; Leenders 2002) to substitute
for physical distance. The nested weights matrix that combines the inverse geographic
distance and non-physical distance matrices is another way to account for various spatial,
economic, technological and transportation proximity factors influencing the spatial
interaction processes (Parent and LeSage, 2008). However, one significant limitation of all
the aforementioned SWM is the assumption of symmetric spatial spillover effects (i.e., the
impact from observation i to observation j is equal to the impact from j to i), which does not
accurately describe the spatial and socio-economic interaction processes in the real world. To
deal with this limitation, a number of studies have constructed asymmetrical nested weights
matrices (Li et al. 2010; Zheng et al. 2019). This type of matrix considers both geographic
and economic proximity, but the indicator selection and matrix definition are relatively
subjective and cannot incorporate population flow into measures of spatial associations.

Focusing on infectious disease transmission, neighborhood relationships, hydrologic
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connectivity of villages (Gu and Spear 2006), and kinship relationships (Emch et al. 2012)
have also been used to construct asymmetric SWMs.

In the network analysis literature, network autocorrelations have been noticed and
investigated by a growing body of studies. Black (1992) proposed a new method based on
Moran’s [ statistics to measure network autocorrelations and argued that weight matrices are
essential to reflect network structures. Leenders (2002) used social distance to construct
spatial weights and applied the SWM in spatial modeling of the dependence embedded in
electoral behavior. Chun (2008) applied eigenvector spatial filtering to build a network link
matrix that combines the influences of competing destinations and intervening opportunities
on travel behavior and used the matrix in a spatial filtering interaction model to analyze
interstate migration behavior in the U.S. Ermagun and Levinson (2018) used the properties
of networks to construct a SWM for examining spatial dependence in traffic network analysis.
These studies recognize the mechanism and sources of network autocorrelations and
emphasize the importance of incorporating network autocorrelations in understanding these
networks. But none of them apply their updated SWMs in spatial econometric models to
explicitly examine the direct and spillover effects induced by these network autocorrelations.

Other recent studies have incorporated actual population flows into the construction
of spatial weight matrices. The flow of population is not only an important spatial interaction
process but also facilitates other spatial spillover effects such as the transmission of ideas and
beliefs (Leenders 2002; Homans 2013) as well as infectious diseases (Anderson 2013; Jia et

al. 2020; Wei and Wang 2020;). Kordi and Fotheringham (2016) proposed a family of
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localized spatially weighted interaction models (SWIM) including origin/destination-focused
SWIM and flow-focused SWIM to address the spatial heterogeneity in spatial interactions
using a geographical weighting approach; they proved that this method performed better in
spatially nonstationary processes analysis. Moreover, the population flows between spatial
units are usually asymmetric in nature and those areas with large net inflows or outflows may
exert stronger spillover effects. For example, cities with more move-out population flow are
more influential (Wei et al. 2018), serving as the critical nodes in the population flow
network and influencing key properties of the network like clustering and transitivity (Xu et
al. 2010; Alstott et al. 2014). These cities are highly associated with upsurges in epidemic
transmission (Zhong and Bian 2016). Thus, a population-flow-based matrix not only better
models the spatial interaction processes, but also better reflects the asymmetric nature of the
interactions between spatial units. However, previous studies have mainly applied
population-flow-based matrices to examine the spatial interaction process itself but have not
incorporated these matrices into spatial regressions to model the actual channels of spatial
spillover (i.e., human interactions) and further examine how the incorporation of
population-flow-based matrices will improve spatial model specifications. The population
flow data used in previous studies are usually yearly or monthly averages, while real-time

data on daily population movement are seldom applied in spatial modeling.

10
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3. Conceptual framework for constructing the SWM using population flow

To fill in the research gaps, this paper proposes a method of constructing a SWM based on
the volume of population flow between two cities and applies the matrix in spatial regressions
to better capture the actual spatial interaction processes. Using the COVID-19 outbreak in
Mainland China as an example, we construct a population-flow-based SWM based on Baidu
population flow data obtained from Baidu Huiyan platform (https://qianxi.baidu.com/2020/)
and apply it in spatial regressions to explore the influencing factors and the real transmission

mechanisms in the spread of COVID-19.

3.1 Theoretical framework

Spatial weight matrices represent the interaction processes between geographic units such as
cities, regions, and provinces. The definition of spatial weights is the key element of matrix
construction (Leenders 2002). In this study, spatial weights based on population movement

are defined as follows:

SS (1)
where the is the spatial weight of unit i towards unit j, reflects the volume of

population movement from city 1 to city j, k is the number of days in the period. Note that this

is an asymmetrical weight matrix as is not equal to . This overcomes a major
shortcoming of traditional symmetrical spatial weight matrices that ignores the direction of

population flow between city pairs.

11
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3.2 The construction of the SWM

Based on the findings of existing studies, human mobility significantly contributes to the
transmission of COVID-19 (Fang, Wang, and Yang 2020; Qiu, Chen, and Shi 2020; Wei et al.
2021; Zhao et al. 2020). Hence, we use Baidu population flow data to construct the SWM in
our spatial econometric model.

The daily inter-city population flow indices were collected from the Baidu Migration
Platform developed by Baidu, Inc. This database applies a location-based service (LBS)
technology to record and visualize the population movement trajectories of all mobile internet
users throughout Mainland China. The database encompasses around 80 percent of the total
number of mobile phone users in Mainland China, thus providing a strong approximation of
the actual population flow between and within cities (Wei et al. 2018). This dataset has been
used in several geospatial analyses of COVID-19 transmission (e.g., Fang, Wang, and Yang
2020; Qiu, Chen, and Shi 2020; Liu et al. 2020; Zhu and Guo 2021; Zhu and Tan 2021). For
each pair of cities, the Baidu Migration Platform provides the daily population flow indices
between them (including both the moving-out indices and moving-in indices'). For each city,
the precise shares of outflows to the top 100 destinations are available, which on average

cover over 97 percent outflows (Fang, Wang, and Yang 2020). This suggests that the data

! The moving-out indices and moving-in indices are based on the travel intensity between specific city-pairs. For example,
the moving-out index of Beijing to Tianjin is referred to the volume of population flow traveling from Beijing to Tianjin.
According to Baidu’s meta-data, population flow from city i to city j is considered as the move-out index for city i and the
move-in index for city ;.

12
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should be able to accurately capture the real volume of population flows among cities during
the research periods. For the remaining 3 percent of outflows to other destinations where
precise values are not given, we follow the first law of geography (Tobler 1970) and adopt
inverse distance weighted interpolation? to estimate the outflow values for each remaining
city. The specific process of population-flow weight matrix construction in this study is
shown in Figure 1. Note that we also test the robustness of our results by alternatively using a
gravity model to impute these missing values for the population-flow-based SWM, as shown

in section 4.6.

2 The inverse distance weighted interpolation follows the equation:

—— (W00-

where Distance jis the Euclidean distance between city 7 and city j; A is the number of destination cities with accurate

move-out indices for origin city 7; V is the number of destination cities without accurate move-out indices for origin city i.

13
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Figure 1 The process of population-flow based SWM construction
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We take the averages of each element in the daily matrix of city pairs’ moving-out
indices by periods as =— , in which denotes the number of the
days in period A. After min-max normalization, the matrix of city pairs’ moving-out indices

was used as the SWM in the spatial models.

4. Application of the SWM to COVID-19 transmission analysis

COVID-19 was first identified in Wuhan, the capital city of Hubei Province. It rapidly spread
outward across China and to other countries, posing a severe threat to human health.
COVID-19 is transmitted through human-to-human contacts, including airborne and fomite
transmissions (World Health Organization 2020). Therefore, human interactions are critical
to the transmission of COVID-19.

In this section, we use city pairs’ moving-out indices as the spatial weights in the
construction of SWM and estimate the direct, indirect, and total impacts of different
independent variables on the number of cumulative confirmed cases of COVID-19 in each
city through spatial econometric models. Baidu started to publicly report daily population
flow data on January 11, 2020; hence the period of our analyses can only start on this date.
The first imported case in Mainland China was confirmed on February 26, 2020, when a
traveler from Iran was reported positive in the Ningxia Hui Autonomous Region. From then
on, more imported cases were confirmed among travelers from foreign countries,

contributing to a new wave of outbreaks in Mainland China. Since the impacts of the

15
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imported cases on pandemic transmission cannot be distinguished from those of other
independent variables in this study, we only look at the period before February 26, 2020 to
avoid interference from these imported cases. In addition, population (out) flows from Wuhan,
the epicenter of the COVID-19 outbreak, slumped after the city’s lockdown at 10 am on
January 23 and the implementation of strict nationwide prevention and control measures.
Therefore, we divide the sample into two subperiods: 1) the period before the Wuhan
lockdown (January 11-23, 2020), during which inter-city travel in Mainland China was
normal; and 2) the post-lockdown period (January 24 — February 25, 2020). We implement
spatial econometric analysis for these two periods separately to examine the different impacts

of explanatory variables during the two periods.

4.1 Spatial econometric models

The transmission of COVID-19 is influenced by a wide variety of factors. Some studies have
argued that coronavirus transmission is affected by geographical proximity, socioeconomic
interactions, and the similarity of meteorological conditions across neighboring spatial units
(Andersen et al. 2021; Sannigrahi et al. 2020). Therefore, spatial autocorrelation of virus
transmission as well as of the independent variables need to be incorporated in spatial
econometric models (e.g., spatial lag model [SLM], spatial error model [SEM] and spatial

Durbin model [SDM]). This allows for more accurate estimation compared to an ordinary

16
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least square (OLS) model. To correctly specify the model, the existence of spatial
autocorrelation in the COVID-19 data must first be tested.

The global Moran’s / index is widely used to detect spatial dependence (Moran 1950):

_ =1 (=) -)
=_. 2
:1( _ )2 ( )
where N is the number of cities; represents an element of the SWM, which defines the

spatial relationships between cities; W is the sumofall ; ( )and is the specific
variable in city i (j), and the  denotes the mean of . The value of Moran’s / does not range
exactly from -1 to 1 but depends on the spatial weight matrix of the study area (De Jong,
Sprenger and van Veen 1984). In general, a negative Moran’s / value indicates spatial
dispersion, while a positive value indicates spatial clustering.

Commonly used spatial econometric models include SLM, SEM, SDM, and the
spatial Durbin error model (SDEM)?. Among these models, SLM accounts for spatial
dependence in the dependent variable, while SEM accounts for spatial dependence in the
error term (Gujarati 2021). The SDM is specifically designed to capture the spatial spillover
effects of both the explanatory variables and the explained variable. It can also be treated as
an unrestricted model that can be simplified into SLM and SEM by coefficient setting
(LeSage 2008). The SDM can be denoted as:

= + o+ + + 3)

3 According to Vega and Elhorst (2013), there are three other types of spatial econometric models: 1) the SLX (spatial lag of
X) model that includes spatial interactions of explanatory variables; 2) the SAC model that includes a spatially lagged
dependent and a spatially correlated error term; 3) the general nesting spatial (GNS) model that includes all three types of
spatial interaction effects.

17
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where Y is the total number of confirmed cases during each period (Period I or II, as
previously defined) and X is a series of explanatory variables that may affect virus
transmission. and are two spatial matrices constructed based on the population
flow volume* and the inverse of geographical distance between city pairs, respectively.
Because COVID-19 has clear evidence and characteristics of human-to-human transmission,
it is more appropriate to use the population-flow-based matrix to capture the spatial
interactions of this (outcome) variable. For spatially lagged explanatory variables, we use
geographical distance as the weighting matrix because geographical proximity can
better capture the spatial spillovers of our explanatory variables, e.g., socioeconomic factors
and meteorological factors.  denotes the constant and  is the error term. When =0, no

spatial lagged explanatory variables are embedded and the SDM is transformed into the SLM.

To examine the potential endogeneity of the spatial weight matrix , we follow the
method in Cheng and Lee (2017) and propose a linear regression model with an endogenous
variable WY:

=+ ( )+ o+ @)

where W is a N*N spatial weight matrix, WY is a N*1 column vector, and X is a N*k

matrix. The spatial autoregressive term WY is an endogenous variable as it is affected by Y,

regardless of whether ¥ is endogenous or exogenous. Potentially we can adopt an

4 During Period I, population flow between cities in China was not disrupted because it was only announced on January 20
that COVID-19 can be transmitted human-to-human and no further warnings on travel risks were announced until January
23. Moreover, Baidu did not publicly release daily population flow data until January 11. Therefore, in the models for Period
I, the spatial weight matrix is built based on the population flow volume during Period I. In the models for Period II, we still
use the population flow volume during Period I to account for the 14-day incubation period of the virus.

18
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Instrumental Variable (IV) model and use WX as a series of instrumental variables to address
the endogenous WY, because WX is clearly correlated with Y. The key point affecting their
validity as instruments lies in whether WX is also correlated with ~ (Greene 2012; Zhu 2011).
If W is exogenous, then WX is uncorrelated with ; hence WX is a valid instrument. If W is
endogenous, then WX is correlated with ; hence WX is no longer a valid instrument.
Arguably, the inverse distance-based W is an exogenous SWM, which will lead to consistent
2SLS estimates if used in the above model setting. This lays the foundation for a Hausman
test which can help us determine whether there are systematic differences between the model
using population-flow-based (potentially endogenous) and the model using inverse
distance-based (known exogenous); that is, whether the population-flow-based is
also exogenous. We follow a classic Hausman test specification where the null hypothesis is
that is exogenous (i.e., no systematic differences between the two models), and the
alternative hypothesis is that is endogenous. We first run the IV model using as
instrumental variables and store the estimation results, which should give us a consistent
estimator because is known exogenous. We then rerun the model using as
instrumental variables and compare the estimation results to the previous model via the
Hausman test. The statistic of our Hausman test is found to be negative (-15.69), which
suggests that we cannot reject the null hypothesis (Baltagi 2008; Hsiao 2014; StataCorp

2017). In other words, no systematic differences are found in the estimated coefficients

19
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between the two models. Therefore, our population-flow-based proves to also be
exogenous and hence should produce consistent estimates in our spatial econometric models.’

In addition to the Hausman test above serving as technical evidence for the
exogeneity of our population-flow-based SWM, we also believe it is conceptually convincing
based on our research design. During Period I, inter-city travel in Mainland China was not
disrupted at all, because no warnings about travel risks were announced until January 23,
2020 when the lockdown of Wuhan happened. Although virus transmission occurred during
this period, population flow between cities was arguably exogeneous to the number of
COVID-19 confirmed cases as life was normal at the time. In our Period II model, to account
for the incubation period of the virus, we construct the SWM still based on population flow
volume during Period I and use it for the spatial lagged dependent variable (i.e., total

confirmed cases during Period II). This design further eliminates potential endogeneity of the

weight matrix.

5> Note that the exogeneity of our population-flow-based W depends on what outcome variable is used in the model. In our
models, daily COVID-19 case number is the outcome variable. In other models using socioeconomic variables as outcome
variables, the exogeneity of our population-flow-based W may be affected.

20



10

11

12

13

14

15

16

This is an author-produced, peer-reviewed version of this article.

4.2 Data source and variable selection

4.2.1 City-level COVID-19 epidemiological data

Daily COVID-19 infection data for the period from January 11 to February 25, 2020 in
Mainland China was retrieved from the China Data Lab of Harvard Dataverse®. This data was
scraped from the daily COVID-19 infection data on DXY .cn, one of the earliest open datasets
developed to track the COVID-19 outbreak’. Some cities such as the Special Administrative
Regions of Hong Kong and Macao are excluded from our analysis due to the lack of
socio-economic data, Baidu population flow indices or meteorological variables. Note that
Wuhan is also excluded because it is regarded as an outlier for the purposes of this study and
may lead to biased results. The final number of cities contained in this study is 272. The
number of cumulative confirmed cases is separately calculated for each of the two study
periods (i.e., the pre-lockdown and post-lockdown periods) for each city and used as the
dependent variable. For the Period II model, the cumulative confirmed cases of each city at
the end of period I were included as an explanatory variable to represent their initial infection

levels at the time of the Wuhan lockdown.

¢ https://doi.org/10.7910/DVN/MRS5IIN

7 According to DXY .cn, the COVID-19 infection data they published was reported by 32 provincial-level Health

Commissions in China
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4.2.2 Baidu population flow Data

As mentioned in Section 3.2, the population flow indices obtained from the Baidu population
flow dataset reflect the daily population movements between cities in Mainland China.
Meanwhile, the dataset also provides a daily within-city population flow index for each city.
These two indices were used in this study as proxies for the intensity of inter-city and
within-city population flow. Specifically, considering the significant level of infection risks
due to population outflow from Wuhan (Qiu, Chen, and Shi 2020), the average population
outflow originating from Wuhan towards each destination city® was incorporated into the
model as an important explanatory variable. Moreover, transportation research often relates
residents’ travel demand to social and economic interactions (Zhou, Zhang and Zhu 2019;
Zhu et. al 2020), hence within-city population flow should also be included as an explanatory

variable.

4.2.3 Socio-economic data

Previous research on the development of epidemics has suggested that it is necessary to take

socio-economic factors such as population, economic development, and medical resources

8 To convert the two indices into the actual volume of person-movements in and out of each city, we use the daily number
of people traveling into and out of Hong Kong provided by the Hong Kong Immigration Department to calibrate and
calculate the number of people that each moving-in index and moving-out index unit corresponds to. Using this data, we
estimate that one index unit in the move-in index and move-out index corresponds to 71,121 person-movements. This
estimated converting factor is constant across all cities and is used to calculate the actual daily volume of population inflow

and outflow of each city.

22



10

11

12

13

14

15

16

17

This is an author-produced, peer-reviewed version of this article.

into consideration since they can greatly affect social interactions, residents’ behavior, and
pandemic diagnosis effectiveness, thereby influencing the transmission of COVID-19

(Oyedotun and Moonsammy 2021; Qiu et al. 2020; Zhai et al. 2021). The socio-economic
variables selected include the total population of urban areas, GDP per capita and licensed
doctors per capita for each city collected from the latest version of the China City Statistic

Yearbook (2018).

4.2.4 Natural meteorological data

As meteorological conditions potentially play a role in the transmission of contagious
diseases (Li et al. 2019; Shi et al. 2020), this study also considers natural meteorological
factors including average daily temperature, average daily wind speed, and average daily air
quality index (AQI). Meteorological data were acquired from the China Meteorological Data
Service Centre?, which includes hourly records of meteorological elements of each
meteorology observation. We first calculated the daily data by averaging the hourly data of
each day for each variable. For each city where meteorological data were not available, the
value of each meteorological variable was imputed using the Empirical Bayesian Kriging

inverse distance weighted interpolation in ArcGIS (Krivoruchko and Gribov 2019)'°. We

° http://data.cma.cn/

10 Kriging is a type of statistical technique for optimal spatial prediction, which has been used widely in meteorological
applications, agriculture, geosciences and many other disciplines due to its minimized prediction error. Compared with
classical Kriging methods, the Empirical Bayesian Kriging is more robust by accounting for the errors introduced by the

estimation of the Semivariogram model (Krivoruchko and Gribov 2019).
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then further aggregate the daily meteorological data into the two defined periods for each city
using the average values of each meteorological element.

AQI is based on the level of six atmospheric pollutants (SO2, NO2, PM2.5, PM10, CO,
03) measured at all monitoring stations throughout every city. Each record includes
information on the daily average, maximum, minimum, and standard deviation values of AQL
In this study, we will use the daily average AQI to represent the air quality conditions of each
research unit.

The descriptive statistics of all the variables are given in Table 1. Because of their
skewed distributions, the dependent variables and some of the explanatory variables are
transformed into logarithms in the models (e.g., total population, GDP per capita, doctors per

capita, total number of confirmed cases in Period I).

[Table 1 Descriptive Statistics of the Dependent and Independent Variables]

4.3 Spatial autocorrelation tests and model selection

The spatial autocorrelation test results are illustrated in Table 2. The significantly positive
values of Moran’s / indices suggest the existence of strong spatial autocorrelation for the
dependent variable during both periods. These results imply that the OLS estimates are
invalid and justify the use of spatial models to address the spatial dependence of the number
of cumulative confirmed cases of COVID-19.

The SWM constructed with Baidu population flow data is applied to capture the
spatial interaction of the dependent variable in our model, while the inverse distance weight

matrix is used to capture that of our explanatory variables such as socioeconomic factors and
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natural meteorological conditions. Following the general-to-specific rule for spatial
econometric modeling (Elhorst 2014), we apply a two-stage testing procedure to select the
most appropriate model, with results reported in Table 3.

First, the Lagrange Multiplier (LM) tests (LM-lag and LM-error) and the robust LM
tests are applied to spatial models for Period I and Period II, respectively. For Period I, the
LM test results are all significant at the 99 percent percent confidence level when the
population-flow-based weight matrix () is applied in the spatial model but are all
insignificant when the inverse geographic distance matrix () is used. This indicates that
when the inverse geographic distance matrix () is used for the spatial models, neither
spatial error model (SEM) nor spatial lag model (SLM) performs better than the non-spatial
model (i.e., OLS model) for Period I. Meanwhile, because the Moran’s / indices suggest the
existence of strong spatial autocorrelation for the dependent variable, these insignificant LM
test results prove that the inverse geographic distance matrix fails to capture the spatial
autocorrelation identified in Period I. On the other hand, when the population-flow-based
weight matrix () is used, both SEM and SLM outperform the non-spatial model for Period
I, suggesting is able to accurately capture the spatial autocorrelation.

For Period II, the LM-lag and LM-error tests and the robust LM tests using different
weight matrices (i.e., and ) are all significant. They suggest that both and
capture the spatial autocorrelation in this Period and that both SLM and SEM outperform the

non-spatial OLS model.
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Second, the Likelihood Ratio (LR) test for the spatial common factors between SLM
and SDM is conducted to verify if the SDM should be simplified to an SLM (Elhorst 2010;
Seldadyo, Elhorst and Haan 2010). Based on the LR test results in Table 3, SDM can be

degenerated to SLM for Period I, while SDM is preferred to SLM for Period II.

[Table 2 Results of Global Moran’s / tests of spatial autocorrelation for dependent variables
based on Population-flow weight matrix]

[Table 3 Results of LM tests, Robust LM tests and LR tests]

4.4 Results

Table 4 reports the empirical results of the two study periods. The spatial models outperform
the OLS model in terms of the Goodness-of-Fit (R?) values in both periods. Additionally, the
coefficients of spatially lagged cumulative confirmed cases are significant in models for both
periods (before and after Wuhan’s lockdown). This indicates that the COVID-19 outbreak in
a city significantly affected the number of cases in its adjacent cities due to population flow,
and inversely, was affected by the COVID-19 incidence in its surrounding areas due to the
spillover effects. Therefore, spatial autocorrelation exists in the number of COVID-19
confirmed cases across cities and spatial econometric models (SLM and SDM) are more
effective and reliable than the non-spatial model (OLS model) for analyzing the potential
determinants of COVID-19 transmission. Additionally, the global Moran’s / test for residuals
of the spatial econometric models indicates that no significant spatial autocorrelation in

residuals exists (see Appendix 1).
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[Table 4 Empirical results for OLS and spatial econometric models]

According to LeSage and Pace (2010), using point estimates of spatial regression
models to estimate the spatial spillover effects may lead to incorrect conclusions because of
feedback loop effects. They also pointed out that partial derivative interpretation of the
impacts from a dependent variable to an independent variable can provide a more valid basis
to interpret spatial effects. Hence, to reveal the exact spatial spillover effects, we estimate
each independent variable’s direct, indirect, and total effects in the spatial econometric

models separately. The decomposed results are illustrated in Table 5.

[Table 5 Estimation results for decomposition of the spatial effects]

The results suggest that the total urban population had a positive direct effect on the
number of cumulative confirmed cases during both periods, indicating that a larger
population increases the locally confirmed cases in that city after controlling for the effects of
other factors. In other words, epidemic control is more challenging in larger cities than in
smaller cities. Specifically, this positive direct effect is stronger after Wuhan’s lockdown.
One possible reason is that COVID-19 transmission within cities gradually became severe
during this period and a larger population base implies higher chances of virus transmission.
Positive indirect impacts of a city’s total population on adjacent cities’ cumulative confirmed
cases are only found in Period I, which may indicate the effectiveness of nationwide

prevention and control measures swiftly adopted by other cities after the Wuhan lockdown'!.

1 After January 24, different levels of prevention and control measures (i.e., the shutdown of public transport and public
places, the lock down of residential buildings/neighborhoods, and the set-up of checkpoints to control the population
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GDP per capita shows no direct impact on the local COVID-19 situation during
Period I, but illustrates significant and positive spillover effects during Period II. This result
suggests that proximity to economically advanced cities may increase the chances of
epidemic transmission for surrounding cities. Significant and positive direct effects of
licensed doctors per capita are identified in the pre-lockdown period (Period I) but not the
after-lockdown period (Period II). The results for Period I indicates that a 1 percent percent
rise in licensed doctors per capita was directly associated with a 99.96 percent increase in
cumulative confirmed cases. While this result may sound counterintuitive, it is likely that
cities with more medical resources were more effective in terms of diagnosing patients with
symptoms of COVID-19. Conversely, some patients may not have been diagnosed effectively
in areas with low levels of healthcare. In Period II, with progress in identification techniques
and enhancement of nationwide publicity about COVID-19, the accuracy of diagnosis in
most places in Mainland China had improved, and most cities had the resources needed to
make diagnoses efficiently and correctly. This may explain why the number of licensed
doctors per capita does not show significant direct impacts in Period II. Additionally, its
significant and positive indirect impacts during Period I but negative indirect impacts during
Period II imply that the medical resources of a city have significant spillover effects that help
nearby cities diagnose and control COVID-19.

As for the three natural meteorological variables and AQI, only average humidity

shows significant positive direct effects on the number of cumulative confirmed cases in both

entering the city) were implemented by most of the cities, especially for cities in Hubei province and some cities with
relatively more confirmed cases like Wenzhou, Hangzhou, and Harbin (Fang, Wang, and Yang 2020).
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periods. This is consistent with the findings in studies by Dogan et al. (2020), and Chien and
Chen (2020). Meanwhile, average temperature shows positive direct effects and negative
indirect effects in Period II. Note that the specific correlation between meteorological
conditions and the COVID-19 pandemic is still controversial (Harmooshi, Shirbandi, and
Rahim 2020; McClymont and Hu 2021) and needs to be further explored. Even so, this study
provides evidence that meteorological variables are significant contributing factors in
COVID-19 transmission and exhibit spillover effects on the COVID situation in surrounding
regions.

One point worth noting is that the index of travel intensity within cities shows no
significant effects in the Period I model but is found to exert significant and negative direct,
indirect, and total impacts in the Period II model. The insignificant impact of within-city
travel flow in the first period may be explained by the lag in COVID-19 transmission from
Wuhan. That is, in the early stages of the pandemic (i.e., prior to Wuhan’s lockdown), most
cities only had a small number of confirmed cases so within-city travel flows would have a
relatively weak impact on the spread of the disease. However, with the increasingly serious
situation of the COVID-19 pandemic in Period II, local governments began to take different
control and prevention measures, including suspending public transportation, closing public
places and factories, and locking down communities. Cities with more severe local outbreaks
generally implemented more strict control and preventative measures, resulting in lower
intra-city travel intensity. In addition, the significant spillover effects of within-city travel

may be explained by policy imitation and referencing between neighboring cities.
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Population outflow from Wuhan is positively associated with local COVID-19
cumulative confirmed cases as well as cases in surrounding cities during both periods. This
result indicates that population outflow from Wuhan, the outbreak source region, posed high
risks to destination cities and adjacent cities. This also suggests the lockdown policy
implemented in the region effectively prevented the further spread of COVID-19, which is
consistent with the conclusions of studies by Liu et al. (2020), , Qiu, Chen and Shi (2020) and
Yang et al. (2020).

Unsurprisingly, the direct and indirect impacts of cumulative confirmed cases in
Period I are significantly positive in Period II, suggesting that the more cumulative confirmed
cases were present in a city before the lockdown of Wuhan, the more serious the outbreak
situation in the city would be during Period II. A higher initial infection level generally
means a greater possibility for human-to-human transmissions in the later stage. The strong
indirect effects further emphasize the necessity of control measures in neighboring cities near

those hotspots.

4.5 SWM performance comparison

In this section, we further compare the performance of the spatial econometric models using
different SWMs for each period.

1) The Period I model
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Regardless of whether the population-flow-based SWM or inverse distance SWM was
used, the global Moran’s / tests for Period I consistently exhibit significantly positive values
(see section 4.3), confirming the existence of spatial autocorrelation in the dependent variable.
However, as mentioned in section 4.3, LM tests and robust LM tests indicate that spatial
models (e.g., SLM, SEM) based on inverse distance SWM fail to capture such spatial
autocorrelation in the dependent variable and these models perform no better than the OLS
model. On the other hand, spatial models using population-flow-based SWM for the spatial
lagged dependent variable successfully address the spatial autocorrelation issue, with the
model residuals exhibiting no systematic spatial pattern at a 95 percent confidence level (see

Appendix 1).

2) The Period II model

As discussed earlier, our Period II spatial econometric model uses
population-flow-based SWM for the spatially lagged dependent variable and inverse distance
SWM for the spatially lagged independent variable. To validate the model results, we further
estimate the Period II model using only the inverse distance SWM for both spatially lagged
dependent and independent variables and compare the performance of these two models

(results provided in Appendix 2).

Compared with the model using only inverse distance SWM, the model employing
mixed SWMs (i.e., inverse distance SWM for the independent variables and

population-flow-based SWM for the dependent variable) has a higher R-square. Although
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there is no major difference across the two models in terms of the significance level of
explanatory variables, the decomposition of direct and indirect effects does suggest that the
model using only inverse distance SWM fails to capture the indirect effects of most
explanatory variables, whereas the model employing mixed SWMs has done well. These

comparisons thus confirm the robustness of our results.

4.6 Additional robustness checks

Finally, we further conduct two robustness checks using: 1) symmetric
population-flow-based SWM!? derived from the average of population move-in and
move-out within each city pair; 2) (asymmetric) population-flow-based SWM with missing
values imputed by a gravity model (Wilson 1974)!3, rather than the inverse distance weighted

interpolation. Compared with the original asymmetric population-flow-based SWM

12 Based on our original population-flow-based SWM (before normalization), we calculate the value of element in
symmetric population-flow-based SWM as:

1
:E( - + - ):

where the is the spatial weight of unit i towards unit j, and is the spatial weight of unit j towards unit i;
is the index that reflects the volume of population traveling from city 7 to city j ;

is the index that reflects the volume of population traveling from city j to city 7 .

13 The gravity model used in this paper can be expressed as follows:

where the is the spatial weight of unit / towards unit j; ( ) is the GDP of city i (city j); ( ) is the
total population of city 7 (city j); geographic distance between city 7 and city j.
We first select city-pairs with accurate move-out indices in our dataset to estimate , , , based on the equation

above. We then use the estimation results to impute move-out indices for city-pairs without accurate move-out indices.
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elaborated in previous sections, the estimation results using these two alternative SWMs
show no major differences in terms of the statistical significance and the coefficient estimates
of key explanatory variables but have slightly lower model R-squares (around 5 percent
lower) (see Appendices 3 and 4). These comparisons suggest that spatial econometric models
using the original asymmetric population-flow-based SWM produce robust results with better
goodness of fit, and thus better capture the role of spatial interactions in COVID-19

transmission.

5. Conclusions

This paper proposes an innovative method of constructing SWM based on the real-time
population flow data into spatial econometric models. Unlike traditional SWMs which only
consider geographic or economic proximity, the matrix in this study introduces travel volume
as the measure of connection between city pairs, aiming to better approximate the impact of
social interactions. City pairs with more intensive travel interactions are defined as closely
connected even if they are geographically far from each other, such as in the case of Sanya
and Beijing. Incorporating the population-flow-based SWM into spatial econometric
modeling improves classical spatial economic theory by more accurately approximating the
spatial interaction processes underlying the spillover effects of spatial outcomes. The
proposed method can be applied to a wide range of economic and social research, including

environment, public health, demography, and social welfare studies.
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In the application part of this study, we adopt spatial econometric models based on the
population-flow-based SWM and traditional geographical distance-based SWM to examine
the potential transmission determinants of COVID-19 in Mainland China. Our sample is from
January 11 to February 25, 2020, covering the critical episodes of both the initial spread and
the peak of infections before the first imported case being reported in Mainland China.
Considering the changes in population flow from the epicenter of the outbreak as well as the
widespread use of prevention and control measures, we divide the whole research period into
two subperiods using the date of Wuhan lockdown (January 23, 2020). The results reveal that
the advanced health care system played an essential role in the early diagnosis and control of
the epidemic. We also find that spatial autocorrelation should be considered when exploring
the correlation between meteorological conditions and diseases. Furthermore, the results
confirm the significant time-lagged effects of traveler outflows from the outbreak source
region on pandemic transmission (Qiu, Chen and Shi, 2020). Interestingly, according to the
results of the Period II model, we find that the population outflow from Wuhan is
significantly associated with a higher number of local cumulative confirmed cases as well as
the number of cases in surrounding cities due to positive spillover effects. These results
emphasize the importance of checking the entire records of travel routes for local
governments.

There are two limitations in this study. First, due to data availability, we use only Baidu
population flow data as our data source of the population flow between and within cities.

Although it has been demonstrated that Baidu population flow data captures the real-time
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actual population flow through Baidu LBS with relative accuracy, this still excludes the
movement of those people who do not use electronic devices, such as elderly people and
young children. Second, even though the data of over 200 cities can be obtained from the
Baidu Migration Platform, the precise moving-out indices of each source-city are only
available for the top 100 destinations. As a result, the data in this paper may not accurately
reflect smaller flows of population between cities. Hence, the analytical approach of this
paper can still be extended when more reliable data resources become available for future

research.
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Table 1 Descriptive Statistics of the Dependent and Independent Variables

Std.
Variable Note Obs. Mean Min Max
Dev.
Total number of .
Number of cumulative
confirmed cases in . . 272 3.165 30.139 0 495
confirmed cases in Period I
Period I
Total population of urban area
Total population 272 174.529 2342 16 2465
(ten thousand)
GDP per capita GDP per capita (RMB) 272 7499232 37511.13 19212 217313
Doctors per capita Licensed doctors per capita 272 0.004 0.002 0.001 0.010
Average temperature Average daily temperature
. . 272 2.02 8.92 -18.90 22.56
during Period I during Period I (°C)
Average daily
Average humidity . T . .
. . relative humidity during Period 272 75.18 9.499 32.08 90.19
during Period I o
I1(%)
Average wind speed Average daily wind speed
. . 272 1.90 0.36 1.24 3.20
during Period I during Period I (m/s)
Average air qualit Average air quality index
ge alr quattly ~rage alr quatity 272 9593 4669 2640 237.00
index during Period I during Period I
Within-city population . . L
Index of travel intensity within
flow index during . . . 272 533 0.66 2.89 7.18
cities during Period I
Period I
Population from Wuhan Population from Wuhan during
i 272 206.54 774.21 0 8024.92
during Period I Period I (thousand)
Total number of .
Number of cumulative
confirmed cases in . . 272 271.39 2859.74 0 46946
confirmed cases in Period 11
Period 11
Average temperature Average daily temperature
. . 272 448 7.62 -15.17  20.79
during Period II during Period II (°C)
. Average daily
Average humidity . T . .
. . relative humidity during Period 272 69.10 11.16 29.30 84.61
during Period 11 o
1 (%)
Average wind speed Average daily wind speed
. . 272 221 0.425 1.24 3.91
during Period II during Period II (m/s)
Average air qualit Average air quality index
& q y . g . uatity 272 68.42 26.42 24.65 140.28
index during Period II during Period II
The average index of travel
Within-city population . . o .
intensity within cities in Period 272 2.65 0.70 0.65 4.96

flow index in Period II

II
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Table 2 Results of Global Moran’s / tests of spatial autocorrelation for dependent variables
based on Population-flow weight matrix

Global Moran’s [ statistics

Total number of confirmed cases during Period | (.48 *%**

Total number of confirmed cases during Period [l 0.21%%*

Table 3 Results of LM tests, Robust LM tests and LR tests

Model specification Period I Period 11

Weight matrix: Population-flow

weight matrix

LM-lag test 11.39%** Q Qg sk
LM-error test 6.93%** 7 TQksksk
Robust LM-lag test 14.44%** 5 Q5%sksk
Robust LM-error test 3.2k 4.79%*

Weight matrix: Inverse

geographic distance matrix

LM-lag test 0.01 54.92% %%
LM-error test 0.16 34 81 %**
Robust LM-lag test 0.18 23.36%**
Robust LM-error test 0.34 3.24%%*
LR test statistics between SDM 12.99 126.24%%*
and SLM

Note: 1. *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of
p<0.05 to determine statistical significance.
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Table 4 Empirical results for OLS and spatial econometric models

Period I (before lockdown)

Cumulative cases (January 11 -

Period II (after lockdown)

Cumulative cases (January 24 -

January 23) February 25)
MODEL OLS SLM OLS SDM
Total population (log) 0.44%** 0.34%** 0.46%** 0.42%**
GDP per capita (log) 0.12 0.16* -0.17 -0.11
Doctors per capita (log) 117.70%%* 99.64%** 8.34 32.01
Average temperature 0.01 -0.01 0.02%%* 0.06%**
Average wind speed 0.11 0.18 -0.12 0.12
Average humidity 0.01** 0.01** 0.04*** 0.03***
Average air quality index -0.01#** -0.01*** 0.01** 0.01
Within-city population flow -0.05 -0.04 -0.68%*** -0.56%**
index
Population from Wuhan 0.01%** 0.01%** 0.01%** 0.01%**
during Period I
Total number of confirmed 0.41*** 0.32%**
cases during Period I (log)
Constant -4.06*** -4.20%** 1.60* -22.85%*
W#*Total population (log) -1.70*
W#*GDP per capita (log) 3.78%**
W#*Doctors per capita (log) -1,792.00%***
W*Average temperature -0.20**
W#*Average wind speed -0.84
W#*Average humidity -0.07
W#*Average air quality index 0.05**
W*Within-city population -0.33
flow index
W#*Population from Wuhan 0.01%**
during Period I
Wa*Total number of 2.48%*
confirmed cases during Period
I (log)
Wpr*Total number of 0.74%*%*
confirmed cases during Period
I (log)
Wpr*Total number of 0.30%**
confirmed cases during Period
1I (log)
R-square 0.45 0.50 0.67 0.79
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Observations

272

272 272

272

Note: *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of p<0.05
to determine statistical significance.

Table 5 Estimation results for decomposition of the spatial effects

Effect Period I (before Period II (after
lockdown) cumulative lockdown) cumulative
cases cases
(January 11 -January 23) (January 24 - February

25)
Total population (log) Direct 0.34%** 0.42%**

Indirect 0.07** -1.78*

Total 0.41%** -1.36

GDP per capita (log) Direct 0.16* -0.11

Indirect 0.03 4.02%**

Total 0.19* 3.92

Doctors per capita (log) Direct 99.96%** 30.15
Indirect 20.41%* -1907.21%**
Total 120.37*** -1877.05%**
Average temperature Direct -0.01 0.06***
Indirect -0.01 -0.21%*
Total -0.02 -0.16%*
Average wind speed Direct 0.18 0.11
Indirect 0.04 -0.89
Total 0.21 -0.78*
Average humidity Direct 0.01** 0.03***
Indirect 0.01%* -0.07
Total 0.02%* -0.04*
Average air quality index Direct -0.01%** 0.01
Indirect -0.01%** 0.05**
Total -0.02%*** 0.05**
Within-city population flow Direct -0.04 -0.55%%*
index Indirect -0.01 -0.39
Total -0.05 -0.94
Population from Wuhan during Direct 0.01*** 0.01***
Period I Indirect 0.01** 0.01***
Total 0.02%** 0.02%**
Total number of confirmed cases  Direct 0.33%**
during Period I (log) Indirect 2.66**
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Total 2.98**

Note: *** p<0.01, ** p<0.05, * p<0.1. This paper uses the traditional cutoff value of p<0.05
to determine statistical significance.
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Appendix 1 Global Moran’s / of residuals based on Population-flow weight matrix

Global Moran’s I P-value
Residuals of SLM for Period I (before 0.06
lockdown)
Residuals of SDM for Period II (after 0.08

lockdown)

Appendix 2 Period II SDM using only the inverse distance SWM for both spatially lagged dependent and

independent variables

Appendix 2.1 Coefficient Estimates

MODEL SDM
Total population (log) 0.56%**
GDP per capita (log) -0.15
Doctors per capita (log) 53.58
Average temperature 0.06***
Average wind speed 0.05
Average humidity 0.03**
Average air quality index 0.01
Within-city population flow index -0.53%**
Population from Wuhan during Period I 0.01%**
Total number of confirmed cases during Period I (log) 0.38%**
Constant -18.59%
W#*Total population (log) -1.75*
W#*GDP per capita (log) 3.20%**
W#*Doctors per capita (log) -1,730.00%***
W*Average temperature -0.23%%*
W#*Average wind speed -0.97
W#*Average humidity -0.07
W#*Average air quality index 0.04*
W*Within-city population flow index 0.09
W#*Population from Wuhan during the Period I 0.01%**
W#*Total number of confirmed cases during Period I (log) 2.51**
W#*Total number of confirmed cases during Period II (log) 0.78%**
R-square 0.75
Observations 272

Appendix 2.2 Decomposition of the spatial effects
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Effect Coefficient
Total population (log) Direct 0.53%**
Indirect -5.91
Total -5.37
GDP per capita (log) Direct -0.09
Indirect 13.85
Total 13.76
Doctors per capita (log) Direct 21.68
Indirect -7580.86
Total -7559.18
Average temperature Direct 0.06%***
Indirect -0.81
Total -0.75
Average wind speed Direct 0.03
Indirect -4.16
Total -4.12
Average humidity Direct 0.03**
Indirect -0.22
Total -0.20
Average air quality index Direct 0.01
Indirect 0.18
Total 0.18
Within-city population flow index Direct -0.53%**
Indirect -1.43
Total -1.96
Population from Wuhan during Period I Direct 0.01***
Indirect 0.01
Total 0.01
Total number of confirmed cases during Period I (log) Direct 0.43%**
Indirect 12.62
Total 13.05
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Appendix 3 Estimated spatial effects using symmetric population-flow-based SWM derived from the average of

population move-in and move-out within each city pair

Effect Period I Period 11
Total population (log) Direct 0.34%%* 0.49%**
Indirect 0.09** -1.77*
Total 0.40%** -1.28
GDP per capita (log) Direct 0.13 -0.14
Indirect 0.04 3.82%%*
Total 0.17 3.68%**
Doctors per capita (log) Direct 85.98%** 37.55
Indirect 26.51%* - 2008.35%***
Total 112.49%** -1970.81%**
Average temperature Direct -0.01 0.06%***
Indirect -0.01 -0.18**
Total -0.02 -0.13%*
Average wind speed Direct 0.18 0. 06
Indirect 0.05 -0.78
Total 0.23 -0.71
Average humidity Direct 0.01%* 0.03%**
Indirect 0.01* -0.06
Total 0.02** -0.03
Average air quality index Direct -0.01%*** 0.01
Indirect -0.01%* 0.06***
Total -0.01%** 0.06%***
Within-city population flow Direct 0.01 -0.51%**
index Indirect 0.01 -0.69
Total 0.02 -1.20
Population from Wuhan during Direct 0.01%** 0.01%**
Period [ Indirect 0.01%* 0.01%%*
Total 0.01*** 0.02%**
Total number of confirmed cases  Direct 0.35%**
during Period I (log) Indirect 9 77k
Total 3.12%*
R? 0.47 0.76

Note: *** p<0.01, ** p<0.05, * p<0.1.
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Appendix 4 Estimated spatial effects using asymmetric population-flow-based SWM with missing values

imputed by a gravity model

Effect Period | Period 11
Total population (log) Direct 0.31%%* 0.46%**
Indirect 0.09*** -1.62
Total 0.40%** -1.16
GDP per capita (log) Direct 0.14 -0.16
Indirect 0.04 1.33%%*
Total 0.18 1.17
Doctors per capita (log) Direct 90.33%** 41.24
Indirect 27.61%* -1253.95%*
Total 117.94%** -1212.70%**
Average temperature Direct -0.01 0.03**
Indirect -0.01 -0.22%*
Total -0.01 -0.19%*
Average wind speed Direct 0.16 0.09
Indirect 0.05 -0.19
Total 0.21 -0.11
Average humidity Direct 0.01%* 0.03***
Indirect 0.01* -0.02
Total 0.02** -0.01
Average air quality index Direct -0.01%*** -0.01
Indirect -0.01%* 0.02
Total -0.01%*** 0.01
Within-city population flow Direct -0.01 -0.55%**
index Indirect -0.01 -0.45
Total -0.01 -0.99
Population from Wuhan during Direct 0.01%** 0.01%**
Period [ Indirect 0.01%* 0.01%%*
Total 0.01%** 0.02%**
Total number of confirmed cases  Direct 0.36%**
during Period I (log) Indirect 2.60***
Total 2.96%**
R? 0.48 0.76

Note: *** p<0.01, ** p<0.05, * p<0.1.
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