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Abstract

In urban transportation systems, taxis are regarded as flexible, convenient, and time-saving. Taxi
demand is affected by various built-environment factors and by the time of the day. Although
many studies have investigated correlations between taxi demand and the built environment, the
direct and spillover effects of built environment factors on taxi demand have not been examined at
a fine spatial scale. To address this gap in the literature, this paper employs spatial econometric
models using GPS-tracked taxi trips, mobile signaling data, and points of interest (POIs) to study
taxi demand in Beijing at a 1-kilometer square grid resolution. The results show that, in the
morning and evening peak hours, road network density has the strongest (positive) direct and
indirect impact on taxi ridership. A relationship is also found between public transportation and
taxi ridership: bus coverage has positive direct effects and insignificant indirect effects on taxi
pick-ups and drop-offs, while subway coverage has negative indirect effects, suggesting that it
may absorb taxi demand from surrounding grids. Results also indicate that various built-
environment factors affect taxi demand differently at morning and evening peak times. This study
reveals the complex nature of taxi ridership and has important implications for policymakers,

transport planners, and other stakeholders in megacities around the world.

1. Introduction

Taxis play a vital role in urban transportation because of the flexibility of the door-to-door service
they offer and their 24/7 availability. A good understanding of the temporal and spatial distribution
of taxi trips as well as the factors that have substantial influences on taxi demand can help
governments and policymakers design a well-connected multi-modal transportation system. A
multimodal transportation system can address the increasing congestion and emission problems in
metropolitan areas and better satisfy passengers’ needs for transit (Cetin & Yasin Eryigit, 2011;
Schaller, 2005).

Many studies have examined the relationship between the built environment and travel behavior in

terms of distance, duration, and mode choice (Cervero 2002; Dong and Zhu 2015; Ewing 2015;
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Wang, 2001; Antipova et al., 2011; Ewing and Cervero, 2010; Ewing et al., 2015; Zhou et al.,
2019; Zhu, 2012, 2013; Zhu et al. 2013, 2017, 2018, 2020). These studies have generally agreed
that built environment factors, including residential and employment density, land use diversity,
distance to public transit, and destination accessibility may all significantly influence travel
behavior. Recently, researchers have begun to explore the impacts of socio-demographic and built
environment factors on taxi demand and related travel behavior. For example, McNally (2008)
proposed that population, employment, and other socio-demographic factors can all affect the
number of taxi passengers. Qian and Ukkusuri (2015) found that a lower median income level is
associated with a smaller number of taxi trips in particular places in New York City. Most recently,
Yu and Peng (2019) suggested that built environment factors also significantly impact the demand
for ride-sourcing services. Following the theoretical framework that has been generalized by this
research stream, this study investigates the relationships between taxi ridership, the urban built
environment, and neighborhood socioeconomic factors. Since many cities lack disaggregated data
at a fine geographical level, the first contribution of this paper is to offer an exemplary framework
for researchers to incorporate and utilize various types of big data, including taxi origin and
destination data (O-Ds), mobile signaling data, points of interest (POIs), and other web data.

Although some studies have examined the built environment and taxi ridership, few have
considered the spatial autocorrelations associated with both taxi ridership and built environment
factors. Moreover, few studies have identified the spatial spillover effects of the various built
environment factors that influence taxi demand. To fill this gap, this study uses spatial
econometric models that take into consideration the spatial autoregressive process. By introducing
the spatial weight matrix, we can more accurately estimate the direct (local) and indirect (spillover)
effects of the explanatory variables on the outcome variable (Anselin, 1988). Therefore, the
second contribution of this research is to provide a more comprehensive understanding of how
different built environmental characteristics and socioeconomic variables influence taxi ridership

via their local and spillover effects.

Furthermore, the spatial distributions of taxi ridership exhibit different patterns during morning
versus evening peak hours (Liu, Wang, Xiao, & Gao, 2012; Zhu, Huang, Guibas, & Zhang, 2013).
It is reasonable to speculate that there is some level of temporal heterogeneity in the relationships
we want to test. Hence, the third contribution of this paper is to explore how built environment
factors affect taxi O-Ds differently at different times (i.e., morning vs. evening).

Applying an innovative approach that combines spatial-temporal big data analytics with traditional
spatial economic models, this study provides a comprehensive picture of how various built
environment and neighborhood socioeconomic factors influence taxi ridership, both in local
neighborhoods via direct effects and in nearby neighborhoods via spillover effects. We find that
these built environment factors have different direct and indirect impacts on taxi ridership and that
these effects vary by time (i.e., morning vs. evening peak). For example, road network density
may not only directly increase local taxi demand but also have spillover effects inducing more taxi
ridership in neighboring areas. Similarly, different types of public transportation have different
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impacts on taxi ridership. Bus coverage has positive direct effects on local taxi ridership but
insignificant spillover effects. However, subway coverage shows negative indirect effects on taxi
pick-ups and drop-offs during both peaks, suggesting that it may absorb taxi demand from nearby
cells. Additionally, the results show different relationships between various categories of points of
interest (POI) and taxi ridership. During the morning peak, the number of POIs in public
management and services increase local taxi demand, while those in residences and related
facilities have negative indirect effects on taxi pick-ups in surrounding areas. Meanwhile, POIs in
commercial and recreational services and POIs in manufacturing and offices both have positive
effects on local taxi pick-ups during the evening peak. POIs in transportation services have a
positive direct impact on taxi demand during both morning and evening peaks.

Based on these results, we suggest that transportation management agencies should pay close
attention to the direct and spatial spillover effects of various built environment factors on taxi
ridership. For example, because road network density not only affects local taxi ridership but also
demand in adjacent areas, it is necessary for transportation planners to comprehensively consider
the road layout in surrounding areas. Moreover, the interaction between different public
transportation modes and taxi usage should be included in taxi demand modeling and multi-modal
transportation planning. As ride-sourcing services such as Uber and Lyft become increasingly
popular around the world, this research also has important planning implications for the improved
integration of these services into the existing multi-modal transportation system.

2. Literature review

Taxi demand in cities is usually imbalanced, with temporal and/or spatial gaps between taxi
services and demand. Imbalanced taxi demand results in empty-load vehicle running, traffic
congestion, and air pollution. Hence, it is essential that urban transport planners have an in-depth
understanding of taxi demand. Many studies have confirmed an imbalanced spatial distribution of
taxi demand. For example, about 90 percent of taxi trips were found to take place in downtown
areas (i.e., Manhattan) in New York City (Qian and Ukkusuri, 2015); taxi demand was found to
differ between urban districts in Munich (Jager et al., 2016); and pick-ups and drop-offs of taxi
trips were found to be imbalanced at a local spatial scale in Shanghai (Liu et al., 2012). With this
in mind, researchers have employed Geographically Weighted Regression (GWR) models in taxi
demand analysis to better explain the imbalance of taxi ridership (Qian and Ukkusuri, 2015; Li et
al., 2019; Chen et al. 2021; Wang and Noland, 2021; Yuan et al. 2021). Spatial heterogeneity and
the non-linear spatial patterns of taxi demand have been considered in their models. However,

spatial spillover effects remain under-researched.

Spatial spillover effects refer to the interaction effects among nearby geographical units due to
their spatial dependence (i.e., spatial autocorrelation). Some preliminary studies have taken spatial

autocorrelation into consideration in analyzing the factors influencing taxi demand or ridership
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(see a summary in Supplementary File). For instance, two conference papers, Correa et al. (2017)
and Pan et al. (2019) both used linear models, spatial error models, and spatial lag models to
examine the spatial distribution of traditional taxis, e-hailing taxis, and/or Uber ridership in New
York City. Lavieri et al. (2018) developed a spatial lag multivariate count model to explore the
factors attracting ride-sourcing trips in Austin. Ni & Chen (2020) used K-means clustering and
spatial lag model to explore the impact of built-environment features on the use of dockless bike
sharing and taxis to serve as transfer modes for metro in Beijing. Similarly, Zhang et. al (2020)
adopted mixed modeling structure of spatial lag and simultaneous equation models to investigate
the influencing factors on traditional taxi and app-based taxi demand in New York City. However,
a thorough review of the existing literature shows that no empirical research to date has considered:
1) the spatial autocorrelation in explanatory variables among geographical units (i.e., existing
research only considers the spatial autocorrelation in outcome variable); 2) taking important
further steps to actually calculate the spatial spillover effects and differentiate them from direct
effects. Therefore, a key contribution of this paper is to fill these gaps and provide more in-depth
understanding of not only the direct (local) effects but also the spatial spillover effects of various

factors on taxi demand.

In addition to the spatial dimension, taxi demand imbalance also exists on a temporal scale. Taxi
demand varies significantly over the course of the day (Liu et al., 2015) and over different days of
the week (weekdays vs. weekends) (Zhao et al., 2016; Wang et al., 2020). Some studies have
attempted to include temporal dynamics in taxi demand prediction (Phithakkitnukoon, 2010;
Veloso, 2011). Moreira-Matias (2013) combined three different time-series models with real-time
taxi trip data to predict short-term demand with demand uncertainty. In transport geography, some
studies have utilized the spatiotemporal characteristics of taxi trips to forecast passenger demand,
such as Lee et al. (2008) and Yuan et al. (2011). More recently, machine learning algorithms have
been used in taxi ridership prediction (Shao et al., 2015; Zhao et al., 2016; Zhou et al., 2019). In
sum, taxi demand prediction models highlight the importance of the temporal heterogeneity in taxi
ridership. In this regard, our paper also attempts to explain the temporal variations in taxi ridership
in relation to various influencing factors; in particular, a comparison is made between morning and

evening peak hours.

Lastly, empirical research has started to explore specifically how taxi ridership may be influenced
by built environment factors and socio-demographic variables (Comito et al., 2015; Comito Qian
and Ukkusuri, 2016; Wang and Mu, 2018). For instance, Yang and Gonzales (2014) found that taxi
ridership in New York is significantly correlated with population density, employment density, and
education levels. Liu et al. (2020) found a strong correlation between taxi ridership and land use
mix, population density, and road junctions in Beijing. Some research has also linked taxi trips to
urban functions (Liu et al., 2021; Keler et al., 2020; Gong et al, 2016; Zhou et al., 2015; Hu et al.,
2021). Moreover, research on the relationships between taxis and other transportation modes,
particularly public transit, has become increasingly important with the development of on-demand
e-hailing platforms (Gonzales et al., 2014; Schaller, 2005; Ulak et al., 2020). Overall, most of
these studies have utilized traditional census data to measure built environment at different
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geographical levels. Yet census data at a fine geographic scale are not readily available for many
cities in developing countries. Our research adopts a novel approach that utilizes various big data
and open-source data, such as cell phone data, POI data, web-crawled housing transaction data, to
measure a variety of built environment and socio-demographic variables. This approach could
provide a useful framework for researchers in developing countries to carry out their own research

on related topics.

3. Data and methodology
3.1 Study area, variables and data source
3.1.1 Study area

Beijing, the study area, had a population of 21.7 million and an urban area of 16,410 km? in 2017.
Ding and Zhao (2014) found that Beijing's spatial structure fits the monocentric city model in their
study on land development, housing prices, and residential and employment distributions. In
addition, Beijing has a six-ring road network, which has been used in some previous studies as the
boundary to analyze urban transportation issues in Beijing (Kong et al., 2017; Yao, Wu, Zhu,
Gao,& Liu, 2019). However, in this study, our analysis covers only the area within the fifth ring
road (Fig. 1) because of the spatial limitations of the mobile signaling data used in our models.
Among Beijing’s sixteen municipal districts, two districts (Dongcheng and Xicheng) are entirely
covered by our study area, and five (Haidian, Shijingshan, Chaoyang, Daxing, and Fengtai) are
partly covered. In terms of spatial resolution, we acknowledge the modifiable area unit problem
(MAUP), which means that the results will vary according to the scale of the research unit,
resulting in statistical bias in spatial analysis (Openshaw & Taylor, 1981). With this in mind, we
divide the study area into 1 km-by-1 km square cells, following the method used in many previous
studies (Kong, Liu, Wang, Tong & Zhang, 2017; Liu, Wang, Xiao and Gao, 2012; Liu, Gong,
Gong and Liu, 2015; Louail et al., 2014). This results in 683 grid cells where both taxi trip data
and mobile signaling data are available.
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l:l Research area

:] Beijing municipality

Fig. 1 The research region

3.1.2 Dependent variables

The dependent variables of this study are taxi trip origins and destinations, which are represented
by the number of taxi trips originating from each cell in the morning peak hours, the number of
taxi trips ending in each cell in the morning peak hours, the number of taxi trips originating from
each cell in the evening peak hours, and the number of taxi trips ending in each cell in the evening
peak hours (Table 1).

In this study, taxi trip records were extracted from GPS trajectory data generated by all taxis in
Beijing from April 1st to 26th 2015, with an average of 17,984 taxis each day in our study area for
this time frame. Every taxi trip record in this dataset contains the geographic locations (i.e.,
longitude and latitude) of a taxi every 30 seconds and the time and location of each pick-up and
drop-off. With the successive trajectories of each taxi, each trip can be extracted and expressed in
the following form: longitude and latitude of the pick-up location, longitude and latitude of the
drop-off location, pick-up time, and drop-off time. An example trip is [(116.29253, 39.86538),
(116.28003, 39.82736), 2015-4-15 15:36:31, 2015-4-15 15:49:39]. Because the dataset includes all
taxis that operated in our study area during the study period, it can be considered to
comprehensively reflect the real spatial and temporal distributions of taxi trips in Beijing. The
average number of taxi trips starting or ending in the study area was approximately 340,000 per
day, with a total of 26 days. All taxi trips were validated according to their travel distance and
duration. That is, taxi trip records were excluded if the travel distance was less than 10 meters and
the duration was less than 10 seconds. For each grid cell, we counted the number of taxi pick-ups

and the number of drop-offs for each hour of each day. We then divided peak hours into the
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morning peak (7 AM — 9 AM) and evening peak (5 — 7 PM). The average morning (or evening)
peak-hour taxi trip origins (or destinations) in a grid cell were calculated as the total number of
taxi pick-ups (or drop-offs) in that cell during morning (or evening) peak hours for all weekdays
from April 1st to 26th, 2015, divided by the number of weekdays. Finally, we related taxi trip O-
Ds with socioeconomic variables, public transit coverage, level of land development intensity, and
different categories of POls, all of which are aggregated at the same grid level. These explanatory
variables are discussed below in detail.

3.1.3 Independent variables

The independent variables in this study were mobile signaling, POIs, coverage of subway stations
and bus stops, average housing price, and other built environment factors such as road network,

percent of road area, number of buildings, and average number of stories of buildings (Table 1).
(1) Mobile signaling data

In China, fine-grained and accurate employment and residential population data are unavailable
for many cities. In such a situation, mobile signaling data can be an alternative for estimating the
number of workers and residents at specific locations (Ding, Niu,& Song, 2016; Louail et al.,
2014). This study employs mobile phone data from China Unicom, offered by Smart Steps Co.,
Ltd". It is worth noting that China Unicom is one of the three largest telecommunication
corporations, and its market share in Beijing is 29.6%. The other two corporations are China
Mobile and China Telecom.

Each mobile user was identified with an anonymous and unique ID from the original mobile
signaling data. The time and duration of every user in a defined local service area were recorded
according to the records of the base transceiver station the user’s mobile phone had connected
with. With the original information, the program offered by Smart Steps identifies the employment

and residential cell for each user. The identification rules are as follows:

The work cell for a user is the cell in which the user stays most frequently between 9 AM and 5
PM during all weekdays within a month. The residential cell for a user is the cell in which the user
stays most frequently between 9 PM and 5 AM (of the next day) within a month. The numbers of
employees and residents were then aggregated by 1 km-by-1 km grid cells and recorded in the

dataset, allowing the residential and employment density in the grid network to be calculated.

'Smart Steps is a data-sourcing company providing Mobile Signaling Data products for China Unicom (Smart
Steps Digital Technology CO., LTD). In this paper, the authors obtained resident and employment distributions in
1km*1km grid cells from Smart Steps.
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(2) POI data

The original POI data, including 140,337 POIs located in the research area, fell within sixteen
categories (finance and insurance services, hotels, living services, shopping, scenic spots, catering,
sports and entertainment, companies and enterprises, business offices, residential buildings and
facilities, government agencies and social organizations, hospitals and clinic services, living
services, educational and social services, public facilities, and transport facilities) and were
obtained from Baidu Map Services (http://map.baidu.com). Baidu is the largest web map service
provider in China (Yao et al., 2017) with a large-scale user group. Since many original categories
are further divided into multiple subcategories, overlapping often occurs between sub-categories
(e.g., some restaurants not only belong to the Chinese restaurants subcategory under the category
of catering services but also belong to the hotels category). Thus, reclassification is necessary.
Referring to the classification system adopted in China’s standard land use planning, the POI data
were reclassified into five categories: commercial and recreational services, manufacturing and
offices, residence and related facilities, public management and services, and transportation
services.? The final classification is shown in Fig.2. Then, the number of POIs in each new

category was aggregated by grid cells.

2 The number of POIs for transportation service are not included in our main models because of their overlap with
bus and subway coverage, hence incurring potential collinearity issues.
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Fig. 2 The reclassification of different categories of POIs

(3) Coverage of subway stations and bus stops

The coordinates of bus stops and subway stations within the study area were obtained based on the
POI data. The buffer area of each subway station or bus stop was generated using the coordinates
as the center and 400m or 200m as the radius from the subway station or bus stop. The coverage
of subway stations (or bus stops) in each cell was calculated as the ratio of the subway (or bus)
buffer area to the total land area of the cell.

(4) Average housing price

The original locations and prices of housing units for sale were collected from a housing
transaction platform (https://bj.lianjia.com) that is widely used in China. As there are no official
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data on the actual transaction prices of real estate in Beijing, this study adopts the housing prices
published on this platform. The average housing price of each grid cell was estimated using the
prices of all housing units for sale in the cell.

However, housing prices were missing for some cells within our study area because of the lack of
housing transactions in those cells as reported by the platform. In previous research, spatial
interpolation methods such as the kriging method and inverse distance weighted method are
widely used to estimate land prices in unknown areas of cities (Chica-Olmo, 2007; Chica-Olmo,
Cano Guervos, & Chica Olmo, 2013; Hu, Cheng, Wang, & Xie, 2012; Hu, Yang, Li, Zhang, & Xu,
2016; Martinez, Lorenzo, &Rubio, 2000; Zhang, Tan, & Tang, 2015). Moreover, the kriging
method has been proven to have the advantage of achieving faster and better global predictions
when there is limited sample data (Montero-Lorenzo, 2009). Therefore, in this study, we used
areal kriging, a kriging-based disaggregation technique in the Geostatistical Analyst extension of
ArcGIS10.5, to address the problem of missing data in some cells (Fig.3 (a)) by replacing missing
values with interpolated values. This allowed for the collection of data over one set of polygons
and predictions for a different set of polygons (Krivoruchko, Gribov, & Krause,2011). The final
interpolation result is shown in Fig.3(b).

- Grid with accurate data

25 5 10 Kilometers

l:l Grid without data
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Fig. 3 The original average housing price data (a) and the predicted average housing prices after
areal kriging interpolation (b)

(5) Other built environment factors

Road network data in Beijing were obtained from Open Street Map (www.openstreet.com), a
collaborative project that includes a free editable map and geographic data, including street maps,
that has been widely used as a data source for road networks (e.g., Wang et al., 2020). Then, the
road area within each grid was calculated by multiplying the length of the road, the number of
lanes, and the lane width (usually 3-4 m, depending on the class of the road) to obtain the total
road area in the grid and the road area ratio of the grid. For example, the width of an expressway
with six lanes is estimated to be 30 m. Note that we used the standard hierarchical road system in
China to calculate road width.

The spatial data of buildings were obtained from Gaode Map Services (http://lbs.amap.com/), one
of the main online map service providers in China. The total number of buildings and the average
number of stories of buildings in each grid were aggregated using these data. Due to data
limitations, data for all independent variables in this study were obtained for 2018, which were the
closest data available to match the taxi trip records for our study period.

3.1.4 Descriptive statistics

The descriptive statistics for all independent and dependent variables are summarized in Table 1.
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The average number of taxi trips in the evening peak hours, including both origins and
destinations, was larger than that in the morning peak hours, while the maximum number of taxi
drop-offs in the evening peak hours was lower than that in the morning peak hours. This may be
because people may have less diversified travel purposes and more concentrated and fixed
destinations during morning peak hours than during evening peak hours. Additionally, in order to
alleviate potential data heterogeneity issues and calculate elasticities, variables are transformed
into logarithms in our models, except the ratio of land covered by 200m radius from bus stops in
the grid cell, the ratio of land covered by 400m radius from subway stations in the grid cell, and
the ratio of road area to total land area in the grid cell. We have tested for potential
multicollinearity among explanatory variables using Variance Inflation Factor (VIF). As shown in
Appendix 1, the maximum VIF value of all explanatory variables across all four models is 5.7,

with a mean around 3.2, indicating no strong multicollinearity exists?.

Table 1. Summary statistics (Obs. = 683)

Variables Mean Std. Dev. Min Max
Number of taxi trip originations in the 17.55 18.92 0.00 102.53
morning peak

Number of taxi trip originations in the 20.02 22.67 0.00 124.14
evening peak

Number of taxi trip destinations in the 15.78 19.57 0.03 226.53
morning peak

Number of taxi trip destinations in the 19.80 21.34742  0.00 136.34
evening peak

Residential density (per km?) 5161.90 5040.97 16.00 35188.00
Employment density (per km?) 6707.98 4732.45 14.00 22976.00
Average housing price per m? (CNY) 69620.46 2143122  29248.00  179562.50
Ratio of land covered by 200m radius 0.37 0.22 0.00 0.91
from bus stops in the grid cell

Ratio of land covered by 400m radius 0.18 0.20 0.00 0.86
from subway stations in the grid cell

Ratio of road area to total land area inthe ~ 0.10 0.053 0.00 0.25

grid cell

Total number of buildings in a grid cell 340.20 167.76 24.00 1791.00
Average number of stories of buildings in ~ 3.79 1.92 1.14 12.91

a grid cell

Number of POIs in commercial and 52.84 52.46 0.00 390.00
recreational services

Number of POIs in manufacturing and 6.62 8.59 0.00 54.00
offices

Number of POIs in residence and related 18.94 15.68 0.00 87.00
facilities

Number of POIs in public management 65.33 58.32 0.00 291.00

and services

3 For VIF cutoff values commonly used by other research, please refer to Montgomery et al., 2012; Gareth et al.,
2013; Chatterjee et al., 2015; Zhu, 2021.
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3.2 Methods

3.2.1 Test for spatial autocorrelation

Changes in number of taxi trips may be spatially dependent due to geographical proximity. The
extent of spatial autocorrelation can be measured using Moran’s I index. Following Moran (1948),
the global Moran’s I index is defined as follows:

S X W, (x, - x)(x, — x)
S*ELEL W,

(1)

where S? is the sample variance, n is the total number of grid cells, x; (xj) is the value of the
attribute considered in area i (j), and W represents the elements of the spatial weight matrix,
which is a binary contiguity matrix in this study. Positive values (usually between 0 and 1) of I
indicate a positive spatial autocorrelation in the analyzed variable; that is, high (low) values
surround a high (low) value. In contrast, negative values (usually between -1 and 0) of I indicate a
negative spatial autocorrelation, with a high (low) value surrounded by low (high) values. If
Moran’s I value is close to 0, spatial independence is suggested. Strong spatial autocorrelation
means that a spatial model should be adopted in order to obtain unbiased estimates.

3.2.2 Spatial econometric model

This research focuses on taxi trip origins and destinations in the morning and evening peak hours.
A series of spatial econometric models, such as the general nesting spatial (GNS) model, spatial
Durbin model (SDM), spatial lag model (SLM), and spatial error model (SEM), can be used for
our analyses. Following the specific-to-general rule to compare different spatial models, we
selected SDM to estimate the impacts of built environment factors such as public transit coverage
and land development intensity (e.g., the total number of buildings in a grid cell, the average
number of stories of buildings in a grid cell), socio-economic variables, and different categories of

POISs on taxi demand. The detailed model selection process is presented in section 4.

Overall, SDM includes both endogenous and exogenous interaction effects, which will help
protect against omitted variable bias. In addition, LeSage and Pace (2009) pointed out that even if
the true data generation progress is the SLM or SEM, the use of SDM will ensure unbiased
estimates for the explanatory variable parameters. Thus, this study applied SDM to estimate the
impacts of various factors on the spatiotemporal distributions of taxi pick-ups and drop-offs. We
divided the analyses into four models — the taxi origin models and taxi destination models during
morning peak and evening peak hours. With these SDM models, we can not only estimate the

direct effects of the explanatory variables on taxi trip origins and destinations in a local grid cell,
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but also measure their impacts on taxi trip O-Ds in neighboring cells (i.e., the spatial spillover
effects).

= x + + X o+ + 2)

~ (0, %) 3)

where represents the endogenous effect, represents the direct effect of explanatory variables,
and represents its spatial spillover effect, is the intercept, and is the error term. In this study,
W is specified as a row-normalized binary weight matrix. The off-diagonal elements w;=1 if units 7 and
j share a common border, and zero otherwise. , is an N-dimensional identity matrix. 7AX/ represents
the number of taxi trip origins or destinations within the grid during the morning peak or evening peak.
X is a collection of thirteen explanatory variables: residential density, employment density, average
housing price, ratio of land covered by 200m radius from bus stops in the grid cell, ratio of land
covered by 400m radius from subway stations in the grid cell, ratio of road area to total land area
in the grid cell, total number of buildings in a grid cell, average number of stories of buildings in a
grid cell, number of POIs in commercial and recreational services, number of POIs in
manufacturing and office, number of POIs in residence and related facilities, number of POIs in
public management and services, and number of POIs in transportation services. Note that in this
study, residential density is only included in the morning peak pick-up model and evening peak
drop-off model, while employment density is only included in the morning peak drop-off model
and evening peak pick-up model because of the nature of commuting trips.

Additionally, because of the influence of feedback loops, the coefficient in spatial econometric
models may be biased, leading to erroneous conclusions. LeSage and Pace (2009) proposed that
the point estimations of spatial models may lead to the inaccurate interpretation caused by
feedback loop effects, and the partial derivative represents a more valid basis for testing whether
the spillover effects exist. Therefore, we further calculate the direct, indirect, and total effects
using the spatial decomposition technique. According to the definition, the direct effect is the
average extent to which the local outcome variable changes when a particular element of an
explanatory variable in that unit itself changes. The indirect effect denotes the average impact of
changing a particular element of an explanatory variable on the outcome variable of neighboring
units or the average response of the outcome variable to the change in an explanatory variable
from neighboring units. The total effect is defined as the sum of these two effects.

4. Results
4.1 Model selection

Several tests were performed to identify the most appropriate model. First, a spatial autocorrelation
test was applied to test for spatial dependence of the dependent variables. Table 2 lists the Moran’s I
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indexes of the taxi O-D points in the four different models. Moran’s I index is an indicator of
global spatial autocorrelation. As shown in the table, the Moran’s I index of all four models
exhibits statistically significant and large positive values, indicating that the distribution of taxi O-
D points demonstrates high and positive spatial autocorrelation during the morning and evening
peaks. Therefore, spatial econometric models that address these spatial effects should be adopted
to accurately estimate the impact of different socioeconomic and built environmental factors on

taxi trip origins and destinations.

The procedure for model selection follows a general-to-specific rule (Elhorst, 2014). Therefore,
the SDM was constructed as a starting point, including the spatial lags of both the dependent and
explanatory variables. The Lagrange multiplier (LM) (Burridge, 1980) tests and robust LM tests
(Anselin, Bera, Florax, & Yoon, 1996) for spatial lag and spatial error of four different models
were applied to test whether the SDM should be degraded to an SLM or SEM. Under the null
hypothesis that there is no spatial autocorrelation, the LMlag and LMerr statistics test the spatial
lag and spatial errors, respectively (Pelin, 2016). The results are illustrated in Table 2, indicating
that both the hypothesis of no spatially lagged dependent variable and the hypothesis of no
spatially autocorrelated error term must be rejected at the 1% significance level. Additionally, we
calculated the AIC, BIC and Log-likelihood values of all SDM, SLM and SEM models (as shown
in Table 3 and Appendix 2). All these indicators suggest SDM consistently outperforms other
models. In sum, we can conclude that SDM is the most suitable model for this research.

Table 2. The Global Moran’s I, LM Test and Robust LM Test of four different models

Morning peak Morning peak Evening peak taxi Evening peak

taxi pick-ups taxi drop-offs pick-ups taxi drop-offs
Moran's I 0.702%** 0.765%** 0.741%** 0.731%**
LMerr 121.535%** 93.620%** 95.029%** 86.268***
Robust LMerr 51.148 *%* 28.124%** 14.734%%* 25.225%**
LMlag 107.132%** 127.982%%** 171.889%*** 135.792%***
Robust LMlag 36.745%%* 62.486%** 91.595%** 74.748%**

Note: *#* ** and * indicate 1%, 5%, and 10% confidence levels, respectively.

4.2 Empirical results of SDM

Table 3 reports the regression results of all four SDM models. The coefficients of the spatial lag
term (WxY) are significant and positive in all four models, consistent with our model selection
results. Table 4 decomposes the direct effects (local effects), indirect effects (spillover effects) and
total effects of all explanatory variables on taxi origins and destinations during morning and evening

peak hours.
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Table 3. Spatial regression results of four SDM models for taxi pick-ups and drop-offs during morning

and evening peak hours

Morning Morning Evening Evening
peak taxi peak taxi peak taxi peak taxi
pick-ups drop-offs pick-ups drop-offs
Residential and Employment density (log) 0.192%%*%* 0.161%%*
employment (6.37) (5.19)
densities Residential density (log) 0.101*** 0.078*+*
(3.08) (2.87)
Housing price  Average housing price (log) 0.137 0.061 0.183%* 0.137
(1.28) (0.6) (1.76) (1.54)
Ratio of land covered by 1.363%%%* 0.834%%*%* 1.244%%* 0.956%**
Public 200m radius from bus stops in (10.07) (6.60) (9.53) (8.55)
transportation _the grid cell
Ratio of land covered by 0.098 0.285%%*%* 0.156 0.171%*
400@ raQius frorTl subway (0.90) (2.81) (1.48) (1.90)
stations in the grid cell )
Road network  Ratio of road area to total 4.208*** 3.567*** 4.574%x* 3.099%**
density land area in the grid cell
(0.90) (7.48) (9.31) (7.36)
Land Total number of buildings in 0.014 0.05 0.009 0.038
development a grid cell (log) (0.25) (0.95) (0.16) (0.79)
intensity Average number of stories of ~ 0.811%*** 0.412%%* 0.442%%* 0.5827%%*%*
buildings in a grid cell (log) (9.43) (5.20) (5.41) (8.20)
Public services Number of POIs in 0.096%%** -0.03 0.138%** 0.208%%*
commercial and recreational (2.80) (-0.95) (7.40)
services (log) (4.21)
Number of POIs in 0.037 0.127%** 0.184%** 0.092%**
manufacturing and offices (1.37) (4.87) (4.15)
(6.81)
(log)
Number of POIs in residence 0.093** 0.015 -0.002 0.086**
and related facilities (log) (2.26) (0.40) (-0.06) (2.51)
Number of POIs in public 0.165%** 0.117%** 0.094** 0.098***
management and services (4.09) (3.10) (2.42) (2.93)
(log)
Constant -3.526%** -2.391 -3.867%%* -3.16%**
(-2.99) (-2.16) (-3.39) (-3.20)
Residential and WxEmployment density (log) -0.019 -0.049
employment (-0.25) (-0.64)
densities WxResidential density (log) ~ -0.017 0.006
(-0.24) (0.10)
Housing price Wx Average housing price 0.011 -0.013 0.062 0.067
(log) (0.17) (-0.2) (0.95) (1.24)
Public WxRatio of land covered by -0.893 % -0.222 -0.788** -0.35
transportation  200m radius from bus stops (-2.72) (-0.73) (-2.50) (-1.30)
WxRatio of land covered by -0.481* -0.546%* -0.652%* -0.636%**
400m radius from subway (-1.77) (-2.17) (2.51) (-2.83)

stations
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Road network WxRoad area ratio -0.942 0.259 -1.085 0.657
density
(-0.88) (0.26) (-1.05) (0.74)
Land WxTotal number of buildings  0.093 0.001 -0.073 -0.088
development in a grid cell (log) (0.78) (0.00) (-0.64) (-0.88)
intensity WxAverage number of stories  -0.384%* -0.064 -0.115 -0.297*
Z)lf(')l;;uldmgs in a grid cell (-1.97) (-0.37) (:0.64) (-1.86)
Public services =~ WxNumber of POIs in 0.025 0.02 0.079 0.055
commercial and recreational (0.31) (0.27) (0.82)
services (log) (1.02)
WxNumber of POIs in 0.114* -0.026 -0.035 0.02
glj;.lfacturmg and offices (1.83) (-0.41) (0.53) (0.39)
Number of POIs in residence ~ -0.214** -0.134 -0.043 -0.145%*
and related facilities (log) (-2.34) (-1.59) (-0.49) (-1.92)
WxNumber of POIs in public ~ -0.006 0.08 0.04 -0.01
1(111;1;1)agement and services (-0.06) (0.95) 0.46) (0.00)
WxyY 0.489%** 0.478*** 0.429%** 0.415%**
(9.46) (8.9) (7.79) (7.50)
AIC 922.15 862.03 823.47 653.30
BIC 1035.31 975.19 936.63 766.46
Log-likelihood -436.07 -406.01 -386.74 -301.65
Obs. 683 683 683 683

Z-values in parentheses. Note: ***, ** and * indicate 1%, 5%, and 10% confidence levels, respectively.

Table 4. Decomposition of the direct, indirect and total effects of explanatory variables on taxi pick-ups

and drop-offs

Morning peak ~ Morning peak ~ Evening peak  Evening peak
taxi pick-ups taxi drop-offs  taxi pick-ups taxi drop-offs

Direct effects

Employment density (log) 0.197%** 0.163%*
(6.69) (5.35)
Residential density (log) 0.103%** 0.08 %%
(3.21) (3.03)
Average housing price (log) 0.143 0.062 0.192%* 0.145
(1.32) 0.61) (1.84) (1.62)
Ratio of land covered by 200m radius 1.346%** 0.848%** 1.227%%* 0.959%#
from bus stops in the grid cell (9-39) (6.69) (9.43) (8.61)
Ratio of land covered by 400m radius 0.065 0.254%* 0.117 0.136
from subway stations in the grid cell (0.57) (2.43) (1.1) (1.48)
Ratio of road area to total land area in the =~ 4.296*** 3.717%%* 4.631%** 3.221%**
grid cell (8.51) (7.89) (9.56) (7.76)
Total number of buildings in a grid cell 0.022 0.052 0.004 0.033

(log) (0.39) (1.00) 0.07) 0.71)
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Average number of stories of buildings in ~ 0.813%** 0.422%** 0.447%** 0.579%**
a grid cell (log) 9.46 (5.34) (5.5) (8.22)
Number of POIs in commercial and 0.101*** -0.03 0.147%%* 0.217%%*
recreational services (log) (2.96) (-0.94) (4.51) (7.77)
Number of POIs in manufacturing and 0.047* 0.13%%* 0.187%*%x* 0.096%**
offices (log) (1.76) (4.97) (6.96) (4.37)
Number of POIs in residence and related ~ 0.08% 0.006 -0.005 0.079%*
facilities (log) (1.96) (0.15) (-0.14) (2.34)
Number of POIs in public management 0.171%*%* 0.127%%* 0.099%* 0.100%**
and services (log) (4.25) (3.40) (2.58) (3.04)
Indirect effects
Employment density (log) 0.124 0.031
(1.04) (0.28)

Residential density (log) 0.056 0.059

(0.47) (0.68)
Average housing price (log) 0.136 0.027%** 0.220%** 0.190**

(1.29) 0.27) (2.25) (2.57)
Ratio of land covered by 200m radius -0.392 0.301 -0.399 0.071
from bus stops in the grid cell (-0.73) (0.62) (-0.86) (0.19)
Ratio of land covered by 400m radius -0.752 -0.698 -0.916%* -0.866**
from subway stations in the grid cell (-1.60) (-1.63) (-2.26) (-2.53)
Ratio of road area to total land area in the ~ 1.944 3.349%* 1.37 2.979%*
grid cell (1.18) (2.23) (0.96) (2.47)
Total number of buildings in a grid cell 0.175 0.041 -0.109 -0.111
(log) (0.89) (0.23) (-0.66) (-0.78)
Average number of stories of buildings in ~ 0.024 0.226 0.117 -0.085
a grid cell (log) (0.08) (0.80) (0.44) (-0.37)
Number of POIs in commercial and 0.124 0.009 0.215* 0.218%*
recreational services (log) (0.95) (0.08) (1.92) (2.28)
Number of POIs in manufacturing and 0.23%* 0.059 0.069 0.089
offices (log) (2.21) (0.57) 0.7) (1.18)
Number of POIs in residence and related ~ -0.293 -0.215 -0.069 -0.168
facilities (log) (-1.94) (-1.58) (-0.53) (-1.52)
Number of POIs in public management 0.131 0.232* 0.125 0.062
and services (log) (0.89) (1.73) (0.98) (0.57)

Total effects
Employment density (log) 0.3227%%* 0.194*
(2.65) (1.7)

Residential density (log) 0.159 0.139

(1.31) (1.58)
Average housing price (log) 0.279 0.089 0.412%%* 0.334%%%*

(1.62) (0.54) (2.63) (2.69)
Ratio of land covered by 200m radius 0.954* 1.149%* 0.828* 1.03%*
from bus stops in the grid cell (1.69) (2.25) 1.7 (2.53)
Ratio of land covered by 400m radius -0.687 -0.444 -0.799 -0.73%*
from subway stations in the grid cell (-1.35) (-0.96) (-1.82) (-1.98)
Ratio of road area to total land area in the =~ 6.24™** 7.066*** 6.001*** 6.20%**
grid cell (3.61) 4.5) (4.04) (4.95)
Total number of buildings in a grid cell 0.197 0.093 -0.105 -0.078
(log) (0.98) (0.52) (-0.62) (-0.54)
Average number of stories of buildings in ~ 0.836 0.648%* 0.564* 0.494%*
a grid cell (log) (2.51) (2.18) ) (2.05)
Number of POIs in commercial and 0.225 -0.021 0.362%** 0.435%%**
recreational services (log) (1.63) (-0.17) (3.07) (4.35)
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Number of POIs in manufacturing and 0.277%* 0.189* 0.256%* 0.185%*
offices (log) (2.55) (1.74) (2.49) (2.36)
Number of POIs in residence and related ~ -0.213 -0.209 -0.074 -0.09
facilities (log) (-1.35) (-1.48) (-0.55) (-0.78)
Number of POIs in public management 0.302% 0.359%* 0.225%* 0.162
and services (log) (1.94) (2.56) (1.69) (1.44)

Z-values in parentheses. Note: ***, ** and * indicate 1%, 5%, and 10% confidence levels, respectively.
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4.2.1 Residential and employment densities

As discussed in the methodology section, the morning peak pick-up and evening peak drop-off
models include the residential density in a grid cell, while the morning peak drop-off and evening
peak pick-up models include the employment density. First, in the morning peak taxi pick-up
model, we find residential density has a significant and positive direct effect, indicating that a 1%
increase in residential density is associated with a 0.10% increase in the number of taxi trip origins
in the local grid. Meanwhile, no significant indirect effects are found. These results are similar to
the findings of Zhang et al. (2018), who focused on influencing factors to determine the ridership
distribution of taxi services in New York City. Commuters from home to workplaces or to transit
stations are probably the main group of passengers that taxis pick up in the morning peak hours;

thus, locations with a higher residential density usually have larger taxi demand.

In the morning peak taxi drop-off model, employment density shows a similar tendency, with
significant and positive direct impacts. A 1% increase in employment density can directly increase
morning taxi trip drop-offs in the local grid by 0.20%. Additionally, such an increase will lead to a
0.32% rise in morning taxi drop-offs for the entire research area, according to the estimated total
effects. We did not find significant spillover effects, suggesting that employment density of a grid
cell or block does not affect the number of taxi trip drop-offs in surrounding areas. This is
reasonable because taxis provide door-to-door services and the drop-off locations of most taxi

trips are close to the destinations that the passengers want to go (e.g., workplace, transit station).

In the evening peak taxi pick-up model, the direct effect of employment density is also significant
and positive, indicating that a 1% increase in employment density can increase the number of taxi
pick-ups in local grids by 0.16%. This confirms that higher job density incurs more taxi demand.
Meanwhile, the insignificant spillover effects suggest again that this variable

has a negligible impact on taxi demand in the surrounding areas.

Lastly, in the evening peak taxi drop-off model, residential density is also found to have a
significant and positive direct effect on taxi drop-offs, indicating that a 1% increase in residential
density can increase taxi drop-offs in the local grid by 0.08%. This finding is in line with Liu et al.
(2012), who investigated the temporal variations of pick-ups and drop-offs and related them to
different land-use features. They claimed that a typical residential area is a source area for taxi

trips in the morning but a sink area in the evening.

Overall, it is interesting to note that both residential density and employment density only have
statistically significant direct effects but no significant spillover effects in all models. Moreover,
cross-model comparisons (based on Chow test) suggest that the elasticity of taxi ridership (as
measured in pick-ups and drop-offs) with respect to employment density is slightly larger than the

elasticity with respect to residential density. This might be because taxi trips in employment
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(sub)centers are more clustered than in residential areas.

4.2.2 Public transportation

Regarding public transportation factors, bus and subway coverage have different effects on taxi
ridership. Bus coverage has significant and positive direct effects in all four models, but no
significant indirect effects. Meanwhile, subway coverage shows positive direct effects on taxi
drop-offs in the morning peak, as well as significant and negative indirect effects on taxi pick-ups
and drop-offs in the evening peak. Our estimates indicate that, in the morning peak models, a 10
percentage point increase in the ratio of bus 200-meter or transit 400-meter catchment areas leads
to a 8.85% (note that 100*(e*%43-1) = 8.850) and a 2.57% increase in taxi drop-offs in the local
grid, respectively, while they both have no significant spillover effects on surrounding grids. In the
evening peak models, bus coverage has similar direct effects on taxi pick-ups and drop-offs
compared to morning peak, with no statistically significant spillover effects; for subway coverage,
only the spillover effects are significant -- a 10 percentage point increase in the ratio of subway
400-meter catchment area would lead to a 8.75% decrease in taxi pick-ups and a 8.30% decrease

in drop-offs in adjacent grids.

A comparison of the results across all four models suggests that, while bus and subway both have
some level of positive direct effect on taxi pick-ups or drop-offs during different times of the day,
they show different patterns of indirect effects. Subway coverage has a significant and negative
indirect effect, suggesting it may absorb taxi demand from surrounding areas, whereas bus
coverage’s indirect effect is statistically insignificant. Certainly, a possible explanation for the
insignificant spillover effects of buses is that the effective service range of a bus stop is typically
smaller than our unit of analysis (i.e., 1km*1km grids), such that the spillover effects cannot be
identified at this spatial scale. Analyses at a finer scale may be able to detect indirect effects of bus

coverage on taxi O-Ds.

4.2.3 Land development intensity

Land development intensity is measured by the total number of buildings and the average number
of stories in a grid cell. While results show that the number of buildings has neither direct nor
indirect effects on taxi O-Ds, the average number of stories is estimated to have significant and
positive direct effects in all four models. Note that the indirect effects of the average number of
stories are also insignificant. In the morning peak hours, a 1% growth in the average number of
stories in a grid can increase taxi pick-ups in that grid by 0.81% and taxi drop-offs by 0.42%. In
the evening peak hours, a 1% growth in the average number of stories can increase taxi pick-ups
and drop-offs in the local grid by 0.45% and 0.58%, respectively. These results suggest that areas
containing more high-rise buildings (e.g., residential, commercial and office) are likely to generate
more taxi demand, while the number of buildings have little impact after all other variables have
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been controlled.

4.2.4 Housing prices

For average housing prices, we find significant positive direct and indirect effects on taxi O-Ds in
the evening peak pick-up model. A 1% increase in housing prices increases evening taxi pick-ups
both in the local grid and in surrounding grids by 0.19% and 0.22%, respectively. Interestingly, we
also find that housing prices have little influence on taxi ridership in the morning peak,
after controlling for other variables. Although people living in more expensive communities may
be financially more capable of taking taxis, they are also more likely to drive their own cars in the
morning peak hours, hence offsetting their need for taxis. Note that in the evening peak taxi drop-
off model, this variable also shows no significant direct effects, which is consistent with the
morning peak taxi pick-up model, because commuters leave home in the morning and return home

in the evening.

4.2.5 Road network density

The road network density, as measured by the ratio of road area to total land area in the grid cell,
is a good indicator of urban transport infrastructure quality. We find this variable has significant
positive direct and indirect effects on taxi O-Ds in all models, suggesting that an improvement in
road network density will increase taxi demand in both the local area and surrounding areas. This
is likely because areas with a dense road network, such as business districts and urban centers,
usually have high concentration of jobs and large travel demand. In addition, a higher exposure to

available taxis on the road and less waiting time for passengers may also increase taxi ridership.

4.2.6 Points of Interest

In general, various POIs show different direct effects and indirect effects on taxi O-Ds. First, the
number of POIs in public management and services have strong positive impacts on local taxi
pick-ups and drop-offs in both peak times. For example, a 1% increase in the number of public
management and service POIs will directly increase local taxi pick-ups by 0.17% and drop-offs by
0.13% in the morning, but has no significant spillover effects. Moreover, the number of POIs in
manufacturing and offices and the number of POIs in commercial and recreational services both
show significant and positive direct effects on taxi O-Ds, but the former has some positive
spillover effects in the morning peak and the latter only has (positive) spillovers in the evening

peak.

Note that we did not consider the POIs for transportation service in our main models because of

their potential collinearity with bus and subway coverage. However, as a robustness check, we
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also tested adding the number of POIs for parking (i.e., a subset of transportation services that is
less likely to be correlated with bus and subway coverage) into our models. The estimation results
are shown in Appendix 3. Although the VIF of parking POlIs is as high as 7.25, we find no major
differences in model estimates compared to our original models, in terms of both the sign and the

magnitude of most coefficient estimates.

5. Conclusions

This research provides some insight into the complex spatial and temporal patterns of taxi
ridership via the application of a variety of big data and a comprehensive investigation of its
relationships with built environment and neighborhood socioeconomic factors. Moreover, we
adopt a spatial econometrics model to examine not only the direct effects but also the spillover
effects of these factors on the spatial and temporal variations of taxi pick-ups and drop-offs. The
findings have important implications for urban planners and policymakers in their efforts to
improve the balance between taxi services and demand, reduce traffic congestion, and enhance the
efficiency of the multi-modal transportation system. Based on multi-sourced big data, this study
also provides a useful framework to generate various built environment variables that are not
directly provided by government agencies in many countries, such as residential and employment
densities, the number of POlIs, public transit stations, and median housing price.

Our results show that road network density has the largest impact on taxi ridership. It increases
both taxi pick-ups and drop-offs during morning and evening peak hours. More importantly, it
increases taxi O-Ds not only in the local grid cell but also in surrounding cells. These findings
suggest that simply increasing the road density in one small area but not the surrounding areas
may cause traffic bottlenecks and result in traffic congestion in the whole area. Transportation
planners should comprehensively consider the road layout in the entire area in order to reduce
traffic congestion.

We also find that the two public transit modes have different effects on taxi ridership. Bus
coverage has significant and positive direct effects on taxi O-Ds during both morning and evening
peak hours but no spillover effects. Meanwhile, subway coverage has significant and positive
direct effects in the morning peak taxi drop-off model, but its spillover effects are found to be
significant and negative in two evening peak models. While the strong negative indirect effects of
subway coverage indicate that the subway stations may absorb taxi demand in surrounding grids,
the positive direct effects of both bus and subway coverage suggest that they may increase taxi
demand in the local grid. Such findings are useful for designing and improving the multi-modal
transportation system to better integrate bus, subway, and taxi usage, in order to enhance mobility,

reduce traffic congestion, and promote environmental sustainability.
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As for land development intensity, the results show that the direct effects of the average number of
stories on taxi ridership are significant and positive in all four models, which is likely related to
the large demand for taxis generated by people living or working in high-rise buildings where
parking is often insufficient. Transportation planners need to pay special attention to the
development of high-rise buildings and make sure the transportation impact analysis of these

projects takes into account the additional taxi demand caused by such development.

Moreover, both residential and employment densities have significant and positive direct effects
on taxi O-Ds in two peak periods, but no significant indirect effects are found. As many large
cities around the world continue to face increasing residential density and employment density,
planners need to improve their travel demand models to specifically incorporate the extra taxi trips
generated by the higher densities, thereby improving the accuracy of those forecasting models.

Lastly, different categories of POIls also affect taxi ridership, among which the POIs in
transportation services consistently have positive and direct effects in all four models. Other types
of POlIs, such as those in public management and services and those in manufacturing and offices,
also show some level of positive direct effect on taxi pick-ups and drop-offs. These findings
suggest that urban travel demand modeling should also take into account the number of various
POIs because they may affect taxi ridership and hence influence traffic.

To some extent, ride-sourcing services such as DiDi in China and Uber are quite similar to taxi
services, especially when many taxi services around the world have launched their own mobile
apps in recent years to better assist dispatching vehicles to areas with high demand for taxis. With
ride-sourcing services becoming increasingly popular around the world, this research also has
important planning implications for better integrating these services into the existing multi-modal

transportation system and improving overall transport efficiency.
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Appendix 1 Results of VIF test.

Morning peak
taxi pick-ups

Morning peak
taxi drop-offs

Evening peak
taxi pick-ups

Evening peak
taxi drop-offs

Employment density
(log)

4.09

4.09

Residential density
(log)

3.27

3.27

Average housing
price (log)

1.53

1.59

1.59

1.53

Ratio of 200m radius
from bus stops to
grid cell

2.57

2.58

2.58

2.57

Ratio of 400m radius
from subway stations
to grid cell

1.44

1.44

1.44

1.44

Road area ratio

1.96

1.94

1.94

1.93

Total number of
buildings in a grid
cell (log)

2.58

2.54

2.54

2.58

Average number of
stories of buildings
in a grid cell (log)

3.04

3.00

3.00

3.04

Number of POIs in
commercial and
recreational
services(log)

5.25

5.22

5.22

5.25

Number of POIs in
manufacturing and
offices (log)

1.93

2.70

2.93

2.36

Number of POIs in
residence and related
facilities (log)

543

5.25

5.25

543

Number of POIs in
public management
and services (log)

5.70

5.68

5.68

5.70

Mean VIF

3.19

3.28

3.28

3.19
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Appendix 2 Results of SLM and SEM Models

Morning peak taxi pick-ups

Morning peak taxi drop-offs

Evening peak taxi pick-ups

Evening peak taxi drop-offs

SLM

SEM

SLM

SEM

SLM

SEM

SLM

SEM

Residential
and
employment
densities

Employment
density (log)

0.18%**

0.03%**

0.15%**

0.227%*

Residential
density (log)

0.08%**

0.03 %%

0.02%#*

4 R4FF

Housing price

Average
housing price

(log)

0.10

0.06

0.15%

0.42%*

0.07%#*

FATFF

Public
transportation

Ratio of 200m
radius from
bus stops to
grid cell

127

0.14%%%

0,147+

0.81%*#*

1.16%***

.23

0.11%**

8.02%**

Ratio of 400m
radius from
subway
stations to
grid cell

0.03

0.11*

0.11*

0.227%*

0.06

0.27%**

0.09

Road network
density

Road area
ratio

449%%%

0.57%**

0.57%#*

3.93%%x

4.68%%%

474

(0.39%**

RS

Land
development
intensity

Total number
of buildings in
a grid cell
(log)

0.07

0.06

0.06

0.06

-0.02

-0.03

0.04

-0.10

Average
number of
stories of
buildings in a
grid cell (log)

0.76%**

0.09%**

0.09%*x*

0.41%**

(0.42%%*

0.48%**

0.07%**

8.4 A%

Public
services

32

Number of
POIs in
commercial
and
recreational
services(log)

0.12%**

0.03%**

0.03#*

-0.01

0.17%**

0.12%**

0.03*#*

6.42%**

Number of

0.04*

0.03%**

0.03#*

0.12%#*

0.17%**

0.02%#*

5.37**



POIs in
manufacturing
and offices

(log)

Number of
POIs in
residence and
related
facilities (log)

0.05

0.04%**

0.04%#*

-0.01

-0.02

0.02

0.03*

2,88k

Number of
POlIs in public
management
and services

(log)

0.16%**

0.04%**

0.04%#*

0.12%#*

0.08%**

0.15%**

0.03*#*

1 4g%

Constant

-3.33%%*

1.20%**

1.20%%*

2.49%F*

-3.28%%*

-6.45%%%

0.79%*x*

-5.66°%***

Wxy

0.26%**

0.05%**

0.28%**

0.02%#*

WxE

0.05%**

0.06%**

0.57%*x*

9.57%*x*

Obs.

683

683

683

683

683

683

683

683

AIC

942.837

941.77

816.49

891.47

866.09

905.46

661.37

719.57

BIC

1006.21

1005.14

879.86

954.84

929.46

929.46

724.74

782.94

Log-
likelihood

-457.42

-456.88

-394.24

-431.74

-419.04

-438.73

-316.69

-345.78

R-square

0.8897

0.8817

0.8897

0.8686

0.9091

0.8966

0.9204

0.9073

Note: The superscripts ***, ** ‘and * indicate that the coefficient is statistically significant at the 1%, 5%, and 10% level
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Appendix 3 Robustness check: SDM estimation results (with POIs in parking

services included)

Morning Morning Evening Evening
peak taxi peak taxi peak taxi peak taxi
pick-ups drop-offs pick-ups drop-offs
Residential and ~ Employment density (log) 0 . 17%** 0.147%%*
employment (5.85) (4.63)
densities Residential density (log) 0.10%* 0.08%*
(3.18) (3.01)
Housing price ~ Average housing price (log) 0.15 0.09 0.21* 0.15
(1.47) (0.98) (2.13) (1.72)
Ratio of land covered by .22 %% 0.68%** 1.09%#* 0.82%**
: 200m radius from bus stops in
trani’;‘:x:ﬁon the grid cell (9.17) (5.56) (8.62) (7.51)
Ratio of land covered by 0.12 0.31%* 0.19%* 0.19%
400m radius from subway (1.12) (3.24) (1.84) (2.23)
stations in the grid cell
Road network Ratio of road area to total 3 7w Sy 41555 2 68%*
density land area in the grid cell
(7.60) (6.84) (8.76) (6.59)
Land Total number of buildings in -0.01 0.03 -0.01 0.01
development a grid cell (log) (-0.15) (0.59) (-0.23) (0.32)
intensity Average number of stories of (.68 (0.27%%% 0.30%%* 0.45%%%
buildings in a grid cell (log) (7.92) (3.44) (3.73) (6.46)
Public services ~ Number of POIs in 0.04 -0.09%* 0.08* 0.16%**
comercial and recreational (126) (-2.79) (2.55) (5.66)
services (log)
Number of POIs in -0.01 0.08%* 0.14%%* 0.044*
manufacturing and offices
(-0.48) (3.05) (5.10) (1.97)
(log)
Number of POIs in residence 0.07 -0.01 -0.03 0.06
and related facilities (log) (1.68) (-0.36) (-0.81) (1.85)
Number of POIs in public 0.11%* 0.06 0.03 0.05
management and services
(2.81) (1.55) (0.92) (1.39)
(log)
Number of POIs in parking 0.25%%% (.20 0.28%%* (.25%%%
services (log) (6.51) (8.06) (7.68) (7.86)
Constant -3.49%* -2.42% -3.87HH* -3.06%*
(-3.04) (-2.28) (-3.52) (-3.22)
Residential and ~ WxEmployment density (log) -0.07 -0.04
employment (-0.90) (-0.54)
densities WxResidential density (log) -0.07 -0.04
(-1.01) (-0.75)
Housing price Wx Average housing price -0.02 -0.06 0.01 0.03
(log) (-0.37) (-1.01) (0.22) (0.65)
Public . WxRatio .ofland covered by 0,855 017 0.74% 031
transportation 200m radius from bus stops
(-2.67) (-0.58) (-2.44) (-1.19)

34



WxRatio of land covered by -0.55% -0.59% -0.69%* -0.69%**
400m radius from subway
stations (-2.08) (-2.46) (-2.77) (-3.21)
Roaq network WxRoad area ratio 053 0.86 052 1.06
density
(-0.50) (0.90) (-0.52) (1.25)
Land WxTotal number of buildings
development in a grid cell (log) 0.21 0.11 0.03 0.02
intensity
(1.69) (0.96) (0.27) (0.19)
WxAverage number of stories _0.21* 0.11 0.06 20.12
of buildings in a grid cell
(log) (-1.08) (0.64) (0.33) (-0.78)
Public services WxNumber of POIs in 0.04 0.03 0.08 0.06
commercial and recreational
services (log) (0.45) (0.39) (1.10) (0.98)
WxNumber of POIs in 0.12%* -0.01 -0.01 0.03
manufacturing and offices
(1.89) (-0.10) (-0.23) (0.58)
(log)
Number of POIs in residence -0.22%* -0.15 -0.06 -0.15%*
and related facilities (log) (-2.43) (-1.84) (-0.70) (-2.01)
WxNumber of POIs in public 0.04 0.13 0.09 0.05
management and services
(0.41) (1.52) (1.04) (0.66)
(log)
WxNumber of POIs in -0.13 -0.16* -0.16* -0.15*
parking services (log) (-1.37) (-1.92) (-1.95) (-1.96)
WxY 0.50%** 0.49%** 0.47%%* 0.44%**
(9.38) (9.38) (8.84) (8.08)
Obs. 683 683 683 683
R-square 0.89 0.90 0.91 0.93

Note: The superscripts ***, ** and * indicate that the coefficient is statistically significant at the 1%, 5%, and

10% level.
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