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The Potential of Ride-pooling in VKT Reduction and

its Environmental Implications

Abstract

Ride-pooling’s contribution to VKT reduction and its associated environmental effects
are not yet fully examined. We design a simulation with operational data from DiDi to
model an ideal situation in which all riders are open to ride-pooling. We find that
under our initial assumptions, with a buffer time of 60s, ride-pooling has the potential
to reduce aggregate VKT by 8.21% as compared to standard ride-hailing mode in a
mid-sized city, Haikou. This reduction in VKT is equivalent to a savings of 1,234,164
Liters in petroleum consumption and 3308 tons in carbon emissions annually.
Additionally, our simulations indicate that the contribution of ride-pooling to VKT
reduction is highly sensitive to buffer time and period of day. We further establish a
decision model that aims to achieve a better balance between social benefits and
riders’ costs. We conclude that ride-pooling services, if implemented on a large scale,
can substantially promote sustainable transportation.

Keywords: ride-pooling, GHG reduction, petroleum saving, Vehicle Kilometers
Travelled, social welfare, urban sustainability
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1. Introduction

Large-scale urbanization, rapid population increase, technological development, and
diverse travel demand have exerted tremendous pressure on urban transport
systems (Batty, 2008; Bettencourt et al., 2007; Bettencourt, 2013). Subway and bus
systems provide efficient and concentrated transport to satisfy travelers' needs while
enhancing urban sustainability. However, due to their limited and fixed-route service,
they cannot fully cater to rising travel demand. Meanwhile, other options such as
taxis provide flexible point-to-point service and are able to address a significant
portion of our day-to-day travel demand. However, individualized point-to-point
transportation services are far less environmentally friendly than mass transportation
systems like buses and subways, and do little to reduce GHG (Greenhouse Gas)
emissions or excessive petroleum consumption. Due to relatively low utilization1 and
low capacity (many people ride alone), they may even aggravate these problems
(Mitchell et al., 2010). Therefore, there is a great need for transportation solutions
that both enhance environmental sustainability and satisfy demand for flexible point-
to-point transportation services.

There is a growing body of literature illustrating that the ride-pooling made possible
by digital ride-hailing platforms may be able to play this role: ride-pooling allows for
flexible, personalized transportation services while significantly reducing VKT
(Vehicle Kilometer Traveled) and therefore traffic emissions compared to traditional
ride-hailing services without pooling (Litman, 2013; Yin et al., 2018; Wu et al., 2021).
In this paper, ride-hailing mode refers to non-pooled ride-hailing, in which a rider hails
a vehicle to take them to their destination, and the vehicle will not be shared with any
other riders or make stops en route. Meanwhile, ride-pooling mode refers to the
service mode in which a rider is willing to share a ride with others who have similar
origin-destination (OD) pairs. In this mode, drivers serve more than one group of
passengers at a time (Agatz et al. 2011; Zhang, 2020). With an increasing number of
countries committed to mitigating climate change, it is important to investigate the
potential of ride-pooling to reduce the carbon footprint of personalized point-to-point
transportation services. Related policy measures that incentivize or mandate ride-
pooling in e-hailing services may therefore have important implications for reducing
carbon emissions of the transportation sector and achieving the sustainability goal.
For example, the California Clean Miles Standard 2018 explicitly sets out to reduce
the carbon footprint of ride-hailing services, and encourages ride-pooling as one of
several measures to do so. The measure has been an important stimulus for studies
on the environmental impacts of ride-pooling and electrification (California Air

1 For example, taxies in New York City have an average idle time of 4.1 hours per 12-hour shift, or roughly a 33%

idle rate (see Zhu and Prabhakar, 2017).
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Resources Board, 2019; Wenzel et al. 2019; Jenn, 2020).

In order to develop similar policies elsewhere, an understanding of how different
contexts may affect the benefits achieved through ride-pooling is necessary. Thus far,
a few studies have investigated the VKT reduction potential of ride-pooling in
megacities with high trip request density. Yet there are far fewer studies on smaller
cities with relatively low trip request density and with no subway/rail system. As such
cities account for a large portion of the world population, and the potential for ride-
pooling is likely to be significantly different in these cities, studies that target such
cities are necessary to better understand and regulate ride-hailing services.
Furthermore, effective policymaking concerning ride-pooling strategy requires a
nuanced understanding of all parties' benefits, costs, and optimization goals. Most of
the existing literature on ride-pooling focuses only on benefits such as reductions in
GHG emissions and petroleum consumption (Cai et al., 2019; Yu et al., 2017;
Caulfield, 2009), which help to endorse emerging ride-pooling services but are not
sufficient for guiding detailed policymaking where trade-offs to balance transportation
needs and environmental sustainability are inevitable. Measuring the pros and cons
of ride-pooling from multiple perspectives is of great practical significance for
establishing a unified decision framework for ride-pooling policy.

Therefore, this paper endeavors to advance new knowledge on ride-pooling by
answering three questions. First, to what extent can ride-pooling contribute to
aggregate VKT reduction in mid-size cities with relatively low trip request density?
We use actual operational data from the DiDi Chuxing GAIA Open Dataset Initiative
as ride-sourcing demand. Simulations of standard ride-hailing mode and ride-pooling
mode are based on all Didi trips recorded in Haikou between May 1st and June 30th
of 2017 and apply the Shareability Network approach (Santi et al., 2014). Aggregate
VKT are separately calculated for each mode by controlling scheduling efficiency to
its respective optimal level, using the minimum path coverage condition of
shareability networks.

The second question concerns the relationship between buffer time for pool-matching
and aggregate VKT reduction. Aggregate VKT reduction improves as buffer time
lengthens. DiDi uses 60 seconds as the default buffer time in its ride-pooling service,
and many previous studies tend to assume this buffer time in their models (Santi et
al., 2014; Yan et al., 2020). However, understanding how performance changes with
buffer time can help policymakers and ride service operators optimize ride-pooling
services to achieve different goals (e.g., maximum reduction in VKT, profit
maximization). This paper examines VKT reduction for a range of buffer times, from 0
seconds (i.e., de-facto ride-hailing mode) to 120 seconds at 15-second intervals. This
provides a detailed estimation of the empirical relationship between buffer time and
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VKT reduction, providing a solid basis for evaluating the effects of ride-pooling under
different buffer time conditions.

The third question concerns establishing an analytical framework to balance the
benefits and costs induced by ride-pooling services. Ride-pooling services have been
widely shown to contribute to urban sustainability by reducing aggregate VKT (Santi
et al., 2014; Cai et al., 2019; Ning et al., 2020; Yan et al., 2020), but the longer
waiting times experienced by riders also lower urban productivity. It is as yet unclear
to policymakers how such services should be designed and regulated to maximize
their merits. In this study, we propose a social welfare-oriented ride-pooling policy
model to quantify the social costs and benefits of ride-pooling, allowing us to
understand how social benefits, such as reduction in petroleum consumption and
GHG emissions, can best be balanced against costs in the form of increased wait
time for riders and hence loss of productivity.

2. Literature Review

With growing environmental concerns and the maturation of ride-pooling services,
precise measurement of the potential contribution of ride-pooling to urban
sustainability, including to transportation network efficiency and to the environment, is
increasingly necessary. As shown in Appendix 1, a comprehensive review of recent
simulation studies has demonstrated the potential for VKT reduction through ride-
pooling. However, there are still major gaps in the existing literature on this topic.

Firstly, most of these previous studies are based on megacities with abundant
populations, well-developed subway/rail networks, large built-up areas, and high
density of transport demand.2 In such areas, ride-pooling agencies tend to have a
larger pool, enabling better pool-matching between riders with similar OD pairs. They
may therefore have better than average performance in VKT, GHG, and petroleum
consumption reduction. In such megacity-based studies, Santi et al. (2014) reported
that ride-pooling could reduce VKT by 30% in New York, Cai et al. (2019) estimated
ride-pooling could contribute to a VKT reduction of up to 33% in Beijing if
implemented for the entire taxi fleet, and Yan et al. (2020) concluded that ride-pooling
could induce a 15.48% VKT reduction in Shanghai. On the contrary, insight into cities
with low trip request density is limited. It is estimated that the trip request density of

2 On a related field to ride-pooling and VKT reduction, a recent review paper, Pernestal and
Kristofferson (2017), analyzed 26 simulation studies on the impact of driverless vehicles. They
also examined VKT as one of the four impact measures. As shown in their review, most simulation
studies on driverless vehicles also focused on large cities.
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Uber in New York City was as high as 524/(day*km2) (Santi, 2014). In Chengdu and
Xi’an, two of the most highly populated cities in China, trip demand levels reach
3144.7/(day*km^2) and 3225.06(day*km^2), respectively. Haikou’s trip request
density, by comparison, is only 26.82/(day*km^2), significantly lower than the
aforementioned cities. Even though ride-pooling has the potential to significantly
reduce VKT in megacities, it is unclear whether these outcomes will be consistent in
cities like Haikou where trip request density is much lower. Thus, it is important to
provide additional evidence to the literature that can help shed some light on these
smaller cities.

Furthermore, there are currently few studies that examine optimality in ride-pooling
through a more holistic lens and take into consideration a range of economic and
social factors such as different buffer time, income levels, petroleum prices and
social carbon costs in their simulation models. As Ma et al. (2020) pointed out,
previous research concerned primarily with reduction in system-wide VKT or travel
time and failed to consider the many interest groups that are involved in ride-pooling.
Excessive reduction in system-wide VKT, for example, may pass the costs onto
passengers, who will need to wait longer or endure lengthier trips due to pooling.
They therefore proposed a balanced strategy for ride-pooling services to explore the
influence of several factors on carbon emissions and pool-matching rate. While their
study provided some empirical evidence, it did not take into account the price (i.e.,
opportunity cost) that riders may pay in the form of long wait time for pool-matching.
The current literature clearly indicates that ride-pooling has the potential to
significantly reduce the VKT of ride-hailing services, but also suggests the complexity
of considerations and variety of different approaches in determining the optimal
pooling method.

To address such complexity, the majority of the literature thus far has relied on batch
mode in ride-pooling simulations, where trip requests made within the same time-
window are considered for pooling, but new trips are not allowed to join those that
have already begun. In practice, the state-of-the-art algorithms used by ride-sourcing
companies such as Didi and Uber for their continuous ride-pooling mode, where new
trip requests can be matched with trips already on-route, utilize accurate real-time
vehicle location and destination information to match new trip requests at any minute.
This kind of rich dataset is generally not available to researchers. We have
conducted a comprehensive literature review of all recent publications on ride-pooling,
with their methodologies and major findings presented in Appendix 1. To the best of
our knowledge, Zhang et al. (2014) is the only study that has developed a heuristic
method for continuous mode simulation. However, their analysis is also possible only
when detailed vehicle trajectory data is available. Furthermore, one weakness of their
heuristic method for continuous mode is that the results are not necessarily optimal.
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Given that their algorithm is based on estimation rather than actual calculations of
optimality, it may allow for matching that does not in fact reduce aggregate VKT and
thus may fail to produce optimal results. In contrast, the batch mode algorithm has
the advantage of being able to calculate optimal matching under the specified
conditions. Batch mode pooling in a real-world scenario also has the advantage of
reducing uncertainty for riders, who will not face sudden additions to their estimated
trip length and time part-way through their journeys.

3. Data and Method
3.1 Data

Data for this study were drawn from the Didi Chuxing GAIA Open Dataset Initiative.
We collected detailed operational GPS trajectory data in Haikou city from May 1st to
June 30th, 2017. Didi is the largest provider of online ride-sourcing services in China,
and their trip dataset encompasses origin and destination coordinates, embarkment
time, disembarkment time, and fees, among other variables. For this study, only data
on origin and destination coordinates and embarkment time are necessary. The
actual time of disembarkment or the actual trip distance are not needed for simulation
because the ride-pooling mode will alter their disembarkemnt time and trip distance.
Table 1 below illustrates the data extracted from the dataset for this study. During our
study period, the average number of trips per day was 66,705, the maximum number
was 108,044, and the minimum 52,078.

Feature Example
Trip ID 17592719043682

Origin longitude 110.3665
Origin latitude 20.0059

Destination longitude 110.3645
Destination latitude 20.0353
Time of embarkment 2017-05-19 01:05:19

Table 2. Example of data extracted from The GAIA Open Dataset

We utilize the road network of Haikou city, available at OpenStreetMap (OSM), in our
simulation. The map is presented in network format. Origin and destination of trip
data is matched to the network with the closest node. Figure 1 demonstrates the road
map and the urban area where most of the trip requests were generated.
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Figure 1 Road map of Haikou city. Source: OSM

3.2 Method Part I: Operation Simulation

In this section, we elaborate on the simulation experiment for the previously specified
ride-hailing and ride-pooling modes. These simulations aim to compute aggregate
VKT generated in each mode under a set of defined conditions (to be further clarified
below) and then estimate the reduction in aggregate VKT under the ride-pooling
mode. In the ride-hailing mode simulation, each trip request is satisfied by an
exclusive ride-hailing vehicle in a real-time fashion. In ride-pooling mode,
spatiotemporally distributed trip requests are collected and merged within pre-
specified time windows, after which they are assigned to different vehicles. The
details of the process are depicted in Figure 2 below:
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Figure. 2. Flow chart of simulation process

3.2.1 Description of key measurements and symbols

To facilitate the discussion, the key variables are summarized and defined as follows:
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Symbol Definition Notes
∆ Buffer time for pool-matching trip

requests
Default value sets to 60 seconds
(Santi et al., 2014)

� Number of trips in a batch
��/�� Origin and destination of trip � Represented as nearest OSM

road network node
�� Distance of trip � in ride-hailing mode �� = �(��, ��)，Km as unit
��� Total distance of trip �, � after being pool-

matched.
km as unit

∆����/∆���� Detour distance of � if pool-matched
with j / Detour distance of � if pool-
matched with i

km as unit

���� Maximum detour distance restriction
ratio

Default value is 20%

�� Transition variable between VKT and
mileage

Vehicle as unit

���� VKT of trip � in ride-hailing mode ���� = ����

����� Total VKT of trips i, j after being pool-
matched.

����� = �����

∆����� VKT saved by pool-matching trips � and

�

∆����� = ����� − ���� − ����

� Travel speed According to weekly published
Haikou average travel speeds of
urban roads

�����
Maximum wait time the first rider is
willing to tolerate for the assigned
vehicle to pick him/her up.

Default value is 5min

�����
Maximum additional time the second
rider is willing to wait for the assigned
vehicle after picking up its first rider. This
is only applicable in ride-pooling mode.

Default value is 5min.

��� Decision variable on whether to match
trip requests � and �

0-1 variable

Table 2. Explanation table of variables involved in simulation model

3.2.2 Assumptions

1. Vehicle travel speed is constant.
2. VKT of each vehicle is not limited to trip-related VKT. For example, in ride-

hailing mode, if the vehicle/driver commits to trip A and B, the total VKT is not
just limited to the sum of trip A and B’s VKT, but also includes the empty-load
VKT from the destination of trip A to the origin of trip B.3

3 Deadhead kilometers at the beginning and end of the day (i.e., from the driver’s home to the first trip, and
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3. The coordination of the algorithmically-guided vehicles lead to vehicles being
discharged from the system if no trip requests come up in a 30-minute period.

4. Rider embarkment and disembarkment are instantaneous, i.e., not affecting
total travel time in the shareability network.4

5. As long as permitted by the pre-defined conditions, riders use ride-pooling
instead of individual ride-hailing.

6. If a rider fails to be pool-matched under the specific conditions for ride-pooling
mode, he/she switches to individual ride-hailing service instead of continuing
to wait to be pool-matched.

3.2.3 Matching strategy
3.2.3.1 Objective for pool-matching strategy

The objective of the pool-matching strategy is to achieve maximum aggregate VKT
reduction. Therefore, total VKT reduction is adopted as an objective function, as
shown in Eq. (1).

(1)

3.2.3.2 Detour tolerance constraint

Under ride-pooling mode, we achieve the functionality of pool-matching by collecting
batches of trip requests in real-time and merging them to the greatest extent possible
under the given conditions. Our baseline model assumes a maximum of two trip
requests per pool, given that most Didi vehicles in China have a 3-4 passenger
capacity, and trip requests often involve more than one rider.5

from the last trip back to the driver’s home) are not included, because data on driver’s home addresses is not

available. However, even if these deadhead kilometers are included in both ride-hailing and ride-pooling

modes, they will be crossed out and hence do not affect the comparison of VKT between these two modes.

(i.e., reduction in VKT).
4 As the model already accounts for wait time (i.e., time that the passenger waits until the assigned vehicle

arrives), and the vehicle is GPS-guided in arriving at the exact location where the passenger awaits,

embarkment time is for the most part a matter of a few seconds. Occasionally, riders may arrive at the pick-

up location after Didi vehicle has arrived, but the exact delay is hard to measure. We have to preclude this

potential uncertainty through our assumption so as to make the simulation work. Meanwhile,

disembarkment does not require the passenger to spend time on payment, because digital payment systems

are the standard for Didi. Simply confirming arrival on one’s phone triggers payment, and most passengers

actually do so after disembarking.
5 We also tested a scenario where we allow a maximum of three trip requests to be matched, with results

briefly discussed in the Conclusion section. However, the three-trip scenario is likely to overestimate the
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This section introduces the algorithm for merging trips. It is assumed there are � trips
in a batch, (��, ��) , with � = 1,2, . . . , � , denotes the origin and destination of the

trip. For any two trips in the pool, �, �, there are four possible pick-and-drop routes:

.

����� denotes the disembarkment point of the previous trip request. Two trips can be
shared if a route exists that connects all origins and destinations in any trip request,
and each origin precedes the corresponding destination. For any candidate route
from the four mentioned above , we calculate the total distance traveled as:

��������,� = �1,� + �2,� + �3,� + �4,� (2)

where �1,� + �2,� + �3,� + �4,� , reresents the tour distance of four sections of the tour.

For route k, since riders are sensitive to pick-up wait time and detour time, we

assume that under ride-pooling mode, the first rider to embark is willing to wait for 5
minutes at most. The second rider to embark is willing to wait for an additional 5
minutes at most, to allow the driver to pick up the other rider first. The constraints
below should be satisfied:

�1,�

�
< ����� = 5 (3)

�2,�

� < ����� = 5 (4)

Furthermore, riders also have limited patience for detours, as excessive detour
distance can reduce riders’ willingness to ride-pool. Lin et al. (2018) proposed an
approach to measure riders’ tolerance for detours called the Driver Detour Restriction
(DDR). This approach ascertained the distance ratio between the length of original
route and the length of detoured route to determine whether this route candidate

potential of ride-pooling for VKT reduction. A number of US-based studies find average occupancies of ride-

hailing trips in different US regions range from 1.34 to 1.9 (CARB, 2019). A pool of three trips, assuming these

numbers, would very likely to exceed the seat capacity of the standard Didi vehicle.
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would be acceptable to the rider who agree to pool with others. Its original definition
is as follows:

�� =
������, ��

�� − �����

�� < ����

�������, ��
�� − �����

�� ≥ ����
(5)

where �� is the distance of the candidate route, ����� is the distance of the origin
and destination locations of the driver and ���� stands for the Detour Distance
Restriction Ratio. This restriction is adopted in our simulation. For both riders in the
pool-matching pair, the maximum ���� is set to 0.2, meaning that if detour distance
caused by pool-matching is no more than 20% of their original journey distance,
riders can accept the pooled route. The constraints below should be satisfied in
accepting a candidate route:

∆���� ≤ 0.2�� (6)

∆���� ≤ 0.2�� (7)

In which ∆���� , ∆���� denote respectively the detour distance of rider �, � if their trip
requests are merged. If any of the routes satisfy conditions (3)(4)(6)(7)
simultaneously, trip requests �, � is seare selected for pool-matching, with binary
decision variable ��� = 1 . In this case ����� = ����� . If routes do not satisfy all the
conditions, they are denoted as ��� = 0 . It is crucial to note that: 1) To reduce strain
on computational resources, the problem of optimization is confined to � ≤ � , which
does not influence the accuracy of unmatched trip requests as they are not regarded
as self-merging (Ke et al., 2020). Specifically, the diagonal elements are 0s since a
trip request cannot be pool-match with itself.

Since it is possible that merging decisions may conflict, for all potential pool-matching
decisions with ��� = 1 , we calculate their VKT and compare this to the VKT
generated if the trips were not merged. We denote ∆����� = ����� − ���� − ����.

The integer programming model that aims at minimizing the aggregate VKT needed
to accommodate all trips is given as below:

���
�,�,�≤�

− ���∆������

s.t.
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�

��� ≤ 1, ∀� ∈ {1,2, . . . , �}� (9)

�

��� ≤ 1, ∀� ∈ {1,2, . . . , �}� (10)

(����� −
��,�,1,�

� )��� > 0
(11)

(����� −
��,�,2,�

� )��� > 0
(12)

(��� − ∆���,�,�) > 0 (13)

(��� − ∆���,�,�) > 0 (14)

This is where objective (8) seeks to minimize aggregate VKT induced by ride-pooling.
Constraints (9) and (10) guarantee that each trip request can be pool-matched with

at most one other trip request. If ��� = 1, then trip requests i, j are successfully pool-

matched, otherwise, they are not. Constraints (11) and (12) guarantee that wait time
for pooled vehicles is within a reasonable range. Constraints (13) and (14) guarantee
that the detour distance of both trip requests in a matched pair is less than 20% of
their respective original trip distance.

3.2.3.3 Other specifications

Scheduling efficiency control

Scheduling efficiency is an important control factor in simulation scenarios. Given
that empty-load sections are also included in the simulation, it is necessary to control
scheduling efficiency in both scenarios to eliminate biases as much as possible. In
this paper, we use a shareability network to maintain scheduling efficiency.

Santi et al. (2014) first introduced the concept of a “shareability network” to address
the ride-sourcing problem, providing researchers with a simple, static, and efficient
modeling method. This approach converts a traditional vehicle sharing problem, with
distinctive temporal-spatial dimensions, to a problem solvable by a static graph.
Vazifeh et al (2018) applied this approach to a dynamic ride-sourcing minimum fleet
problem and reported robust results on vehicle reduction. We adapt this approach to
control the scheduling efficiencies of ride-hailing and ride-pooling to the same level
for comparison. The simulations in both the ride-pooling and ride-hailing scenarios
are operated under the minimum fleet conditions derived from this approach, so that
differences in scheduling plans should not bias our results.

The method of constructing a vehicle shareability network in our simulation was as
follows. We began by analyzing data in the GAIA Open Dataset and extracting rows

https://doi.org/10.1016/j.trd.2021.103155


This is an author-produced, peer-reviewed version of this article.
The final publication is available at www.sciencedirect.com.

Copyright restrictions may apply.https://doi.org/10.1016/j.trd.2021.103155

of trip request information. Then we initialized the shareability network as a DAG
(directed acyclic graph). Node �� ∈ � represents the ��ℎ trip (‘trip’ here refers to trips

after pool-matching and merging). With all trips represented as nodes in , directed

edges (��, ��) are added into G i.f.f.

��,��� − ��,����� ≤ ����� (15)

��,��� is the disembarkment time for the ith trip request, ��,����� is the embarkment time

for the jth trip request. The inequality means that after finishing the trip request,

the vehicle must fulfill the ��ℎ trip request while the time consumed cannot exceed the
maximum tolerance ����� If two trip requests can be satisfied by the same vehicle, we
link the corresponding nodes in the shareability network with a directed edge. If a
group of nodes is weakly viable by a path, this means that all the trip requests
represented by these nodes can be satisfied by the same vehicle, which is called a
dispatch. To facilitate a feasible dispatch, the model finds the minimum path
coverage of the shareability network.

Figure.3 illustrates an example Shareability network. Nodes A to F represent 6
different trips, and nodes are mutually linked according to their viability. Figure 2(a) is
the original shareability network, Figure 2(b) is a minimum path coverage, indicating
that at least two vehicles are necessary to satisfy all trip demand. This dispatch is the
most efficient one.

Figure.3 (a). Shareability network; (b) its minimum path coverage in a ride-pooling
scenario

3.2.3.4 Method of aggregate VKT calculation
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Let �1 = {(�, �)|��� = 1} denotes the set of trips successfully pool-matched, and �2 =
{(�, �)|��� = 1}denotes the set of trips not pool-matched. Represented with pool-matching
decision table, the total VKT induced by this batch of trips in their operational section is:

������������ =
(�,�)∈�1

������ +
(�,�)∈�2

������ (16)

Represented by the shareability network defined above, (16) can also be formulated

������������ =
�∈�

����� (17)

where is the VKT generated by the trip represented as node in the network.

After this batch of trips, the fleet moves on to serve next batch. During this process,
empty-load VKT, denoted as ��������_���� , is induced. The VKT generated in their
empty-load sections by this batch of trips are:

��������_���� =
(��,��)∈�

�����,��� (18)

This step can ensure the deadhead kilometers between trips are considered in our
model. Therefore, the total VKT generated by this batch of trips is:

�������ℎ = ������������ + ��������_���� (19)

Aggregate VKT is the sum of the VKT of all the batches:

������������ =
����ℎ

�������ℎ� (20)

3.3 Method Part II: Ride-pooling Policy Model Development

A central problem for policymakers is balancing individual and social benefits and
costs. If a matching algorithm prioritizes environmental benefits (aggregate VKT
reduction in this case), individual riders may have to accept longer waiting times for
pool-matching. As riders have limited tolerance, riders may be frustrated by
excessive time loss and society may experience productivity loss even though the
matching produces significant environmental benefits.

This section elaborates on a social welfare-oriented ride-pooling policy model (SW-
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oriented RPM) to address this problem. It offers an approach to balance benefits (fuel
savings and reduction in carbon emissions) and costs (riders’ time losses) of ride-
pooling, thereby contributing to better policymaking in this field. Second, it involves
several influential factors and integrates them into a single decision-making
framework, enhancing the model’s generalizability and providing an intuitive
understanding of how these factors affect the balancing of different interests. Third,
the model provides a guide for setting optimal buffer time for pool-matching under
various scenarios, a practical problem faced in real-life ride-pooling service. Given
the assumption that all riders are willing to ride-pool as much as possible within the
model constraints, the implications of ride fee discounts for encouraging ride-pooling
is not considered in our model.

3.3.1 Description of key measurement and symbols

Symbol Definition Unit Note

���
Petroleum
consumption
Efficiency

L/100km Default value as 9.06

��

Carbon
emission per
litre
petroleum

Kg/L Default value as 2.68

�� Carbon
pricing

$/ton Default value as 80

�� Density of
petroleum

Kg/L Default value as 0.8

�� Petroleum
fee

$/ton Default value as 6870

� All trip
requests

�
= {�| ���� � ������ ���� ��� 1�� �� ��� 30�ℎ}

��

Total waiting
time of trip
request �

s Total waiting time of a trip request comprises
buffer time and connection time, � ∈ �

���(∆, ������)

Mean VKT
reduction
rate

%
It is a function of buffer time ‘∆' and periods of
day ‘������'

Table 3. Explanation table of variables involved in SW-oriented RPM

3.3.2 Time cost function ��(�)

Waiting for transport vehicles can impose opportunity costs on riders. Such disutilities
may lead to rider dissatisfaction (Suck et al., 1997). Furthermore, extra wait time for
individuals may cumulatively reduce the productivity of the whole society. For
simplicity’s sake, we measure the time cost of ride-pooling as follows,
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��(�) = �� (21)

where � symbolizes riders’ wait time in ride-pooling mode and � symbols riders’
economic loss per second, calculated using the average income level in Haikou city
in 2017. This measure merely calculates loss in terms of monetary (opportunity)
costs.

3.3.3 Utility function

The utility function for social welfare, �, is equivalent to the sum of the positive utility
from the reduction in petroleum consumption and carbon emissions and the negative
utility from riders’ time loss due to waiting for ride pooling. Intuitively, we define it as
follows.

� = ���������� + ������� − �������� (22)

Upetroleum, Ucarbon, Uwaiting are defined as

���������� = ���(∆, ������)
�∈�

����� ∗ �� ∗ �� ∗ �� (23)

������� = ���(∆, ������)
�∈�

����� ∗ �� ∗ �� ∗ �� (24)

�������� =
�∈�

��(��)� (25)

Specifically, ���������� represents utility of reduced petroleum consumption, �������

represents the utility of reduced carbon emissions, and �������� represents the
(negative) utility of riders’ time loss due to waiting for pool-matching and vehicle
arrival. Note that total waiting time comprises buffer time and connection time. Buffer
time ∆ is a determining factor in the SW-oriented RPM and will be assigned a
designated value. Longer buffer time theoretically enables more pooling and
therefore greater VKT reduction and larger savings on petroleum consumption and
carbon emissions. Connection time is a variable that describes the necessary travel
time for the assigned vehicle to pick up the riders, which will be calculated
dynamically based on our pool-matching algorithm. For reference, the average
connection time was 3.07 minutes in ride-pooling mode and 2.2 minutes in ride-
hailing mode based on our simulations.

4. Result
4.1 Ride-pooling’s impact on aggregate VKT reduction

Under our pre-defined conditions, we conduct simulations for both ride-pooling mode
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and ride-hailing mode and compare their aggregate VKT. Figure 4 displays the daily
results. The blue line indicates aggregate VKT in ride-hailing mode; the orange line
indicates aggregate VKT in ride-pooling mode. We find that while aggregate VKT
generated by both modes vary periodically, proportionate VKT reduction is relatively
stable at around 8.21%, except on several abnormal days. The simulation results
suggest that ride-pooling’s performance in lowering aggregate VKT is significant.
Note that our simulated aggregate VKT results include both VKT generated during
trips and those during empty-load periods.

Figure.4 Aggregate VKT generated on daily basis

4.2 Ride-pooling’s contribution to energy savings and GHG emission reduction

One benefit generated by reduction in aggregate VKT is reduced petroleum usage.
Figure 5 displays the daily petroleum savings generated by ride-pooling. It is shown
that ride-pooling mode, compared to standard ride-hailing mode, could reduce
petroleum consumption by an average of 3,372L per day in Haikou city.
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Figure 5 Daily savings in petroleum consumption

A decrease in petroleum consumption brings with it environmental benefits and
promotes sustainability as it reduces GHG (Greenhouse Gases, mainly carbon
dioxide) emissions. High GHG emissions pose a major threat to environmental
sustainability globally, contributing to the escalation of the greenhouse effect and
threatening global ecological security.

Kolbe et al. (2019) define a method of measuring automobile GHG emissions:

� =
�=1

�
���
�� (26)

Where � is the fleet size, �� is the mileage of vehicle � , � is the petroleum
consumption rate (unit by L/km), and � is the GHG produced by each liter of
petroleum when fully burnt.

Since DiDi restricts operating vehicle models, we can calculate GHG emissions
accordingly. The results show that 1,234,163.80 L of petroleum can be saved each
year through ride-pooling, corresponding to 3,307.56 tons of carbon emissions.

4.3 Empirical relationship between buffer time and aggregate VKT reduction
Our previous ride-pooling simulation was based on collecting all trips in batches at
60-second intervals (i.e., buffer time). This allows TNCs and riders to fully exploit the
potential for pooling any collected trips within the same batch. Theoretically, longer
buffer time increases pool-matching potentials and thus allows for larger aggregate
VKT reduction. However, this trend may be non-linear. Thus, we further simulate VKT

https://doi.org/10.1016/j.trd.2021.103155


This is an author-produced, peer-reviewed version of this article.
The final publication is available at www.sciencedirect.com.

Copyright restrictions may apply.https://doi.org/10.1016/j.trd.2021.103155

reductions based on different buffer times. We conduct such simulations for a sample
of 14 days (May 1st -14th), which should be sufficient to provide robust estimates of
the mean and standard deviation of VKT reduction for each buffer time.

Figure 6 demonstrates the relationship between buffer times and VKT reduction rates.
The dark blue dots represent the mean VKT reduction rate at each buffer time (i.e.,
0s, 15s, 30s…) and the light blue area indicates a region of two standard deviations
from the means.

Figure.6 Buffer time vs. percentage of aggregate VKT reduction. As buffer time increases,
percentage of aggregate VKT reduction grows with approximate logarithmic rate

Furthermore, ride-pooling at different periods of day is also likely to demonstrate
different levels of VKT reduction due to the varying intra-day demand. Wang et al.
(2021) have demonstrated this phenomenon. Using 60 seconds as the default buffer
time, we also examine the intra-day temporal heterogeneity in VKT reduction effects;
that is, how VKT reduction from ride-pooling may vary at different times of day.
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(a)

(b)
Figure.7 (a) hourly reduced aggregate VKT (unit by vehicle*km); (b) hourly reduced aggregate VKT

percentage. Vertical black dash lines separate the day into five distinct periods.

Figure 7(a) and 7(b) displays the temporal variation in VKT reduction effects. Both
Figures contain 61 lines, which represent the 61 days from May 1st to Jun 30th. The X
axis indicates the 24 hours of a day. The Y axis in Figure 7(a) represents absolute
reduction in VKT and the Y axis in Figure 7(b) represents proportionate reduction in
VKT. Based on the patterns illustrated in Figure 7, we roughly divide a day into five
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periods: early morning (4 am~7 am), AM peak (7 am~9 am), midday (9 am~5 pm),
PM peak (5 pm~7 pm), and evening (7 pm~4 am). As the figures show, early morning
exhibits only a small VKT reduction in terms of absolute volume since few people are
traveling so early. However, interestingly, this period demonstrates a high percentage
reduction in VKT. The same pattern also emerges during the evening period, when
the volume reduction in VKT is average, but the percentage reduction is
disproportionately high. This may be because in the early morning or evening, trips
tend to share more similarities in terms of their origin and destination areas. For
example, riders tend to travel from home to workplace or other points of interest
(POIs) in the morning and from the workplace or entertainment venues to home in
the evening. Therefore, it is more likely that riders’ routes overlap and that they can
share a vehicle during these periods. The AM peak and PM peak witness a moderate
rise in both absolute and proportionate reduction in VKT, and the midday period
remains at around the average level. Finally, there is a sudden spike in both absolute
and proportionate VKT reduction from 11 p.m. to 12 a.m., followed by a significant
decline after midnight. Our data show that there is indeed a substantive increase in
Didi trip requests between 11pm and 12am, which we suspect is due to the standard
closing time of commercial venues in Haikou city at 11pm. Moreover, during this late
evening hour, people will be hailing Didi and taxis to go from a few commercial
venues to residential areas, and thus they tend to have similar O-D pairs, making
ride-pooling highly efficient. After midnight, most of these trip requests have been
fulfilled and the efficiency of ride-pooling drops again. In sum, the many variations in
VKT reduction over the course of the day suggest the necessity of considering
differences in periods of the day in calculating the benefits of ride-pooling. They also
serve as the basis for proposing a dynamic buffer time scheme that adjusts
according to intra-day variations in travel demand in order to achieve the optimum
societal benefits from ride-pooling.

4.4 Scenario analysis using SW-oriented RPM

This section explores how TNCs can determine optimal buffer time for ride-pooling
services under different scenarios based on the SW-oriented RPM. Period of day,
petroleum price, carbon emission cost, and regional income level (i.e., riders’ time
costs) are tested at different levels to analyze their influence on optimal buffer time.
The optimal buffer time ∆� based on social welfare maximization is calculated using
the equation

∆� = ��� ���
∆

�(∆) (27)

Scenario 1. Period of day analysis
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As illustrated above, different periods of the day correspond to different levels of
demand. Morning peak and evening peak periods are likely to generate many riders,
concentrated in direction (commuters). This makes pool-matching easier and leads to
better performance in aggregate VKT reduction. During off-peak hours, when trip
demand is less concentrated temporally and spatially, ride-pooling is likely to have
worse performance in aggregate VKT reduction. The relationship between periods of
day and optimal buffer time for social welfare maximization is shown in Figure 8(a)
below.

Scenario 2. Petroleum price analysis

Petroleum price directly determines the economic benefits of ride-pooling. Reduced
aggregate VKT in ride-pooling mode reduces petroleum consumption and hence
petroleum costs. The higher the price of petroleum, the more significant the
economic benefit of ride-pooling. In our simulation, we consider scenarios with
different petroleum prices from low to high, and calculate their corresponding optimal
buffer time. The relationship is shown in Figure 8(b). For reference, petroleum prices
in 2017 were around 6870 CNY/ton. It is shown that petroleum price is a significant
determinant of optimal buffer time. The empirical relationship is roughly linear.

Scenario 3. Carbon emission governance cost analysis

Social Carbon Cost (SCC) is a popular tool used in climate change policy, particularly
in determining regulatory policies involving GHG emissions. Nordhaus et al. (2017)
proposed a specific means of calculating SCC as well as an estimate of its value.
SCC was estimated at around USD 31.2/ton (with 1USD:6.4CNY, 199.68CNY/ton) in
2015 and is projected to reach USD102.5/ton by 2050. Similar to petroleum price,
SCC influences the social welfare of ride-pooling. Greater VKT reduction in ride-
pooling mode means a larger reduction in carbon emissions, hence reducing SCC. In
our simulation, we consider scenarios with different levels of SCC and examine how
they are related to the optimal buffer time for social welfare maximization. Figure 8(c)
shows that SCC consistently increases optimal buffer time. With an increase in SCC
from 200 CNY/ton to 2,000 CNY/ton, optimal buffer time increases by 12 seconds.

Scenario 4. Regional income level analysis

Regional income level is an essential factor affecting the wait time riders are willing to
tolerate in ride-pooling mode.6 Higher regional income level means riders are less
patient in waiting to be pool-matched. Our simulation explores different levels of
regional income from 40,000 CNY/year to 120,000 CNY/year at intervals of 10,000
CNY/year, and estimates the corresponding optimal buffer times. The relationship
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between regional income level and optimal buffer time are shown in Figure 8(d)
below. As shown in the figure, optimal buffer time for ride-pooling decreases as
regional income level increases. However, this relationship is not linear. In the range
between 40,000 CNY/year and 70,000 CNY/year, optimal buffer time decreases
rapidly as regional income level rises. From 70,000 CNY/year to 120,000 CNY/year,
the rate of decline in optimal buffer time in response to a higher income slows down
substantially. Although this scenario focuses on on-demand ride-pooling services, it
may also have relevance for understanding how riders with different income levels
are able to tolerate waiting in other situations, such as waiting for public transit.

(a) (b)

(c) (d)

Figure.8 (a) Relationship between periods of day and optimal buffer time (b) Relationship
between petroleum price and optimal buffer time; (c) Relationship between SCC level and
optimal buffer time; (d) Relationship between regional income level and optimal buffer time

5. Conclusion, discussion, and policy implications

This paper estimates the reduction in aggregate VKT potentially generated by large-
scale ride-pooling service and analyzes the balance of social benefits and costs
under different conditions. The results can enrich our understanding of the potential
benefits of ride-pooling service in medium-sized cities where trip request density is
typically lower, hence make an important addition to the literature that has been only
focusing on megacities so far.
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Our results show that ride-pooling can significantly reduce aggregate VKT in a
medium-sized city. Under the default conditions of the model, ride-pooling reduces
aggregate VKT by 8.21% compared to standard ride-hailing and commensurately
reduces petroleum consumption and GHG emissions. Moreover, altering buffer time
in ride-pooling mode from the standard 60 seconds, which is widely adopted in ride-
pooling practice and in empirical research, can significantly enhance the VKT
reduction effects of ride-pooling. In our default model, adding another 60 seconds to
buffer time can increase the aggregate VKT reduction from the estimated 8.21% to
around 12%. However, increasing buffer time is not always going to incur better, or
socially optimum, solution, especially when other model conditions may also be
affected (e.g., longer buffer time increases riders’ opportunity costs). Therefore, we
propose a SW-oriented RPM to provide a unified framework to measure and balance
several major potential benefits and costs induced by ride-pooling service. Our result
shows that, despite varying periods of day, petroleum prices, carbon emission costs,
and regional income levels (within a reasonable range), optimal buffer time
consistently falls between 15 seconds and 30 seconds, suggesting the strong viability
of the ride-pooling market, as this buffer time is rather short for riders. Regulations
and incentives thus should be proactively considered to increase the proportion of
people who pool their rides.

This research has two major implications. First, we contend that while past studies
have demonstrated significant VKT reduction effects from ride-pooling in megacities
like NYC, Shanghai, and Chengdu, the performance of ride-pooling in mid-sized
cities, like Haikou in our study, are much lower. While cases in megacities report
reductions of 30% to 40% in aggregate VKT, our simulation suggests that the
potential for VKT reduction in Haikou is only 8.21% under our defined default
conditions. Therefore, it is reasonable to caution policymakers that ride-pooling’s
effects for reducing aggregate VKT are not universal across cities with different
situations. To evaluate this effect and make appropriate policies, transport planners
and TNCs should consider the exact background in which ride-pooling services
operate and conduct case-by-case analysis. In this regard, the analytical framework
presented in this paper is highly generalizable. Second, from the perspective of
overall utility or social welfare, the proposed SW-oriented RPM suggests that TNCs
should consider adjusting buffer times according to a range of conditions including
times of day, petroleum costs, SCC, and regional income levels. In particular, optimal
buffer time should be altered dynamically based on the time of the day to achieve
social welfare maximization. Moreover, our SW-oriented RPM framework can be
extended to include additional considerations pertinent in practical scenarios, hence
providing a more concrete basis for ride-pooling service design.

While this study makes important contributions to the literature, there are several
areas that future research can aim to improve. First, the effectiveness of ride-pooling
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mode in lowering aggregate VKT is highly correlated with riders’ travel patterns.
Riders’ travel patterns are affected by the distribution of urban functional areas, the
built environment, and so on. For cities with denser built environment, such as Hong
Kong, New York, and Tokyo, ride-pooling may lead to more significant VKT reduction.
On the other hand, in cities with a smaller population, more dispersed urban form,
and lower trip request density, VKT reduction effects are less manifest. Due to
limitations in data availability, this paper is unable to test more cities with varying
characteristics. However, our analytical framework can be directly applied to many
cities. Once this same analysis is completed for a sufficient number of cities, we can
then run a regression to examine how different urban forms and built environment
characteristics may influence the performance of ride-pooling in terms of VKT
reduction, thereby informing better urban design and urban planning. This would be
an interesting direction for future research.

Second, our simulation uses batch mode, under which a new trip cannot be accepted
until the completion of the current pooled trip. Another mode known as "continuous
mode" allows the vehicle to take new orders during an ongoing pooled trip under
certain circumstances. While continuous mode is currently being used in most ride-
pooling platforms (e.g., UberPool, Didi Pingche), their algorithms utilize accurate real-
time vehicle location and destination information to match new trip requests
instantaneously. This kind of data are only accessible to these service providers. Due
to this data limitation, most academic research uses batch mode for ride-pooling
simulations. Zhang et al. (2014) is the only exception that explores the continuous
mode ride-pooling simulation, but the heuristic method they use generally cannot
guarantee the results are optimal. With real-time data on vehicle locations,
destinations and trajectories provided to researchers, future research could more
accurately investigate the potential for VKT reduction given continuous mode
matching and compare the results with the optimal matching under batch mode.

Finally, due to lack of data on the exact number of passengers per trip request, we
assume a maximum of two trip requests can be matched in each pool. Although this
may slightly underestimate potential VKT reduction, we believe it is a reasonable
assumption because a number of studies have found average occupancies of ride-
hailing trips in different US regions range from 1.34 to 1.9 (CARB, 2019). A pool of
three trips, assuming these numbers, would very likely to exceed the seat capacity of
a standard Didi vehicle. In order to test the robustness of our results under the two-
trip maximum assumption, we also examined the stronger assumption that allows a
maximum of three trip requests to be pool-matched. Results show that only 5% of all
trip requests have sufficiently aligned O-Ds to be matched into these larger pools of
three trip requests. The resulting VKT reduction in the maximum three-trip requests
scenario is 9.41%, meaning only 1.2% additional VKT reduction is achieved over the
8.21% reduction in a two-trip requests scenario. Therefore, the underestimation of
potential VKT reduction due to our initial assumption of a maximum of two trip
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requests in any pool should be minor, even if each vehicle can have sufficient seat
capacity to accommodate three trip requests. Nevertheless, with data on the exact
passenger number of each requested trip, future research could provide more
accurate estimates on VKT reduction.
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Appendix 1. Summary of literature on ride-pooling and VKT reduction

Source Research objectives Study
Cities

Modelling or
simulation method

Important technical details Conclusions
Support
continuous
mode?

Support
capacity
≥ 3?

Optimalit
y of the
result?

Agatz, N., Erera, A. L., Savelsbergh, M. W., &Wang, X.
(2011). Dynamic ride-sharing: A simulation study in metro
Atlanta. Procedia-Social and Behavioral Sciences, 17, 532-
550.

Minimize the
aggregate VKT

Atlanta The rolling horizon
approach

NO NO NO 14~18% of reduction in
aggregate VKT

Zhang, D., He, T., Liu, Y., Lin, S., & Stankovic, J. A. (2014).
A carpooling recommendation system for taxicab
services. IEEE Transactions on Emerging Topics in
Computing, 2(3), 254-266.

1) Minimize
aggregate VKT
2) Minimize the
aggregate travel time

Shenzhen 1) Distributed
computation
2) Heuristic
matching

YES YES NO 60% of reduction in the
total mileage compared to
its baseline

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.
H., & Ratti, C. (2014). Quantifying the benefits of vehicle
pooling with shareability networks. Proceedings of the
National Academy of Sciences, 111(37), 13290-13294.

1) Maximize the
number of
participants
2) Minimize
aggregate VKT

New York Graph’s minimum
path coverage

NO NO YES 40% reduction in fleet
size and accumulative trip
lengths

Yu, B., Ma, Y., Xue, M., Tang, B., Wang, B., Yan, J., & Wei,
Y. M. (2017). Environmental benefits from ridesharing: A
case of Beijing. Applied energy, 191, 141-152.

Minimize aggregate
VKT

Beijing Not mentioned Not
mentioned

Not
mention
ed

Not
mentioned

Energy consumption,
CO2 emissions, and NOx
emissions by 26.6
thousand tce, 46.2
thousand tons, and 235.7
tons, respectively in one
year

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E.,
& Rus, D. (2017). On-demand high-capacity ride-sharing via
dynamic trip-vehicle assignment. Proceedings of the
National Academy of Sciences, 114(3), 462-467.

Minimize the
aggregate travel time

New York Linear
Programming

NO YES NO

Chen, M. H., Jauhri, A., & Shen, J. P. (2017, November).
Data driven analysis of the potentials of dynamic ride
pooling. In Proceedings of the 10th ACM SIGSPATIAL
Workshop on Computational Transportation Science (pp. 7-
12).

1) Minimize
aggregate VKT
2) Minimize the fleet
size

San
Francisco
New York
Los
Angeles

Greedy search
algorithm

NO YES NO Averagely around 18%
reduction in VMT and
32% reduction in fleet
size.

https://doi.org/10.1016/j.trd.2021.103155


This is an author-produced, peer-reviewed version of this article.
The final publication is available at www.sciencedirect.com.

Copyright restrictions may apply.https://doi.org/10.1016/j.trd.2021.103155

Xue, M., Yu, B., Du, Y., Wang, B., Tang, B., & Wei, Y. M.
(2018). Possible emission reductions from ride-sourcing
travel in a global megacity: the case of Beijing. The Journal
of Environment & Development, 27(2), 156-185.

Minimize aggregate
VKT

Beijing Not mentioned Not
mentioned

Not
mention
ed

Not
mentioned

Cooperation strategy can
achieve up to 85% CO2
emission reduction and
88% NOx reduction

Cai, H., Wang, X., Adriaens, P., & Xu, M. (2019).
Environmental benefits of taxi ride sharing in
Beijing. Energy, 174, 503-508.

Minimize aggregate
VKT

Beijing Linear
Programming

NO NO YES Ridesharing can reduce
VMT by 33%

Yan, L., Luo, X., Zhu, R., Santi, P., Wang, H., Wang, D., ... &
Ratti, C. (2020). Quantifying and analyzing traffic emission
reductions from ridesharing: A case study of
Shanghai. Transportation Research Part D: Transport and
Environment, 89, 102629.

Minimize the
aggregate travel time

Shanghai Graph’s minimum
path coverage

NO NO YES 23% reduction in fuel
consumption

Ma, N., Zeng, Z., Wang, Y., & Xu, J. (2021). Balanced
strategy based on environment and user benefit-oriented
carpooling service mode for commuting
trips. Transportation, 48(3).

Minimize aggregate
VKT

Chengdu 1) Graph’s
minimum path
coverage
2) Linear
programming
3) GA algorithm

NO YES NO Significant carbon
emission reduction under
several scenarios

https://doi.org/10.1016/j.trd.2021.103155

