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The impact of mass gatherings on the local transmission of COVID-19 and the
implications for social distancing policies: Evidence from Hong Kong

Abstract

Mass gatherings provide conditions for the transmission of infectious diseases and pose
complex challenges to public health. Faced with the COVID-19 pandemic, governments and
health experts called for suspension of gatherings in order to reduce social contact via which
virus is transmitted. However, few studies have investigated the contribution of mass
gatherings to COVID-19 transmission in local communities. In Hong Kong, the coincidence
of the relaxation of group gathering restrictions with demonstrations against the National
Security Law in mid-2020 raised concerns about the safety of mass gatherings under the
pandemic. Therefore, this study examines the impacts of mass gatherings on the local
transmission of COVID-19 and evaluates the importance of social distancing policies. With
an aggregated dataset of epidemiological, city-level meteorological and socioeconomic data,
a Synthetic Control Method (SCM) is used for constructing a ‘synthetic Hong Kong’ from
over 200 Chinese cities. This counterfactual control unit is used to simulate COVID-19
infection patterns (i.e., the number of total cases and daily new cases) in the absence of mass
gatherings. Comparing the hypothetical trends and the actual ones, our results indicate that
the infection rate observed in Hong Kong is substantially higher than that in the
counterfactual control unit (2.63% vs. 0.07%). As estimated, mass gatherings increased the
number of new infections by 62 cases (or 87.58% of total new cases) over the 10–day period
and by 737 cases (or 97.23 %) over the 30-day period. These findings suggest the necessity of
tightening social distancing policies, especially the prohibition on group gathering regulation
(POGGR), to prevent and control COVID-19 outbreaks.

Keywords: COVID-19 pandemic; Mass gatherings; Social distancing policy; Prohibitions on
group gathering
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Introduction

Managing the complex and unique health security risks posed by mass gatherings is
challenging (Blyth et al., 2010; Ishola & Phin, 2011; Rainey et al., 2016). Many studies point
out that mass gatherings can be associated with increased risks and amplified transmission of
infectious diseases which are transmitted through respiratory routes, such as influenza,
measles, and meningitis (Al-Tawfiq & Memish, 2012; Memish et al., 2015; Yezli et al., 2016;
Hong & Gautret, 2018; Gautret, 2020). Under the circumstance of the COVID-19 pandemic,
mass gatherings, according to the World Health Organization (WHO), amplify the spread of
viruses and inhibit a country's ability to respond (WHO, 2020). It is well established that
COVID-19 is transmitted between people through direct/indirect contacts, contaminated
subjects and environmental factors, and the infection risks are proportional to the closeness of
interactions with people who are infected (Li et al., 2020; Ong et al., 2020; Burke et al., 2020;
Li et al., 2021). A stricter risk assessment recommended by WHO states that even medium-
sized gatherings may create conditions that enable the transmission of COVID-19 (WHO,
2020). Given the high contagiousness of COVID-19, crowded gatherings can create
environments conducive to virus transmission among participants and lead to subsequent
dissemination within their families. When a community is experiencing an outbreak, mass
gatherings may lead to a reduction in social distancing behavior and create challenges for the
prevention and control of infectious diseases. Notwithstanding subsiding pandemic situations,
public health officials still warn that mass gatherings, with extensive social mixing and
uncertainties, has the potential to trigger a resurgence of COVID-19 infections. The risks of
infections through mass gatherings are also partly determined by the type, venue, and
location of mass gatherings and the demographics of participants (Shi et al., 2010; Abubakar
et al., 2012; Ebrahim & Memish, 2020). The gatherings that involve closer and more
extended contact and are held indoors or at overcrowded sites, such as professional
conferences and musical events, may be more susceptible to infections. Other types of
gatherings such as demonstrations and sporting events, which often take place in outdoor
environments with better ventilation, may have lower transmission risks.

In 2020, social distancing and the exhortation to avoid social contact were adopted worldwide
to contain the transmission of COVID-19. Many jurisdictions further imposed restrictions or
bans on group gatherings as part of their anti-pandemic policy. In Hong Kong, the
government imposed the Prohibition On Group Gathering Regulation1 (POGGR) from March
2020 onwards, stipulating the number of people allowed in a group and banning large-scale
mass gatherings. Case clusters of COVID-19 were reported worldwide in parties and personal
or social activities where a relatively small number of people were involved. To date, the
scientific community has gained a significant understanding of how these small group
gatherings in indoor settings could contribute to the virus transmission (see for example,
Furuse et al., 2020; Lelieved et al., 2020; Vuorinen et al., 2020; Moritz et al., 2021). But to
what extent large-scale gatherings may contribute to the spread of COVID-19 in local

1 Associated regulations are made by the Chief Executive in Council under section 8 of the Prevention and
Control of Disease Ordinance (Cap. 599).
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communities? Although it is widely believed that mass gatherings could disrupt social
distancing and exacerbate the scope of the virus transmission due to the complex patterns of
social mixing at these events (Ishola & Phin, 2011; Rainey et al., 2016; Ebrahim & Memish,
2020), empirical evidence to date is rather limited. Mat et al. (2020) analyzed a single mass
gathering, the four-day Sri Petaling Mosque religious event in Malaysia, and concluded that it
was a key catalyst for the second wave of COVID-19 outbreak in the country. A retrospective
cohort study by Domènech-Montoliu et al. (2021) also found that the COVID-19
transmission and subsequent outbreak in Borriana, a municipality in Spain, were associated
with several mass gathering events related to a traditional festival. In contrast, opposite
evidence and conclusions also exist. A recent study suggests that the Black Lives Matter
Public Gatherings in the U.S. increased non-participants' stay-at-home behavior such that it
offset the increased transmission risks among protestors (Dave et al., 2020). In summary,
there is still a dearth of empirical research for performing a comprehensive assessment of the
impact of mass gatherings on the transmission of COVID-19 in local communities. The
purpose of this study is to provide additional empirical evidence and reduce this gap in the
literature.

In this study, we pay special attention to public gatherings that occurred in Hong Kong in
mid-2020 when public tension escalated due to the enactment of the National Security Law
(NSL). During the COVID-19 outbreak, the coincidence of the relaxation of POGGR and
public demonstrations against the NSL in Hong Kong provides us with an opportunity to
study the impact of mass gatherings on the local transmission of COVID-19. Using Hong
Kong as a case study, this study examines the epidemiological data to probe any correlation
between mass gatherings and increases in COVID-19 local cases.

Policy environment and public gatherings in Hong Kong

Hong Kong has a unique political status and subtle relationship with mainland China under
the "One Country, Two Systems" principle, which safeguards national sovereignty while
allowing Hong Kong a great degree of autonomy, retaining its own economic and
administrative systems. In Hong Kong, public demonstrations are held yearly on July 1,
usually organized by the pro-democracy camps (Cantoni et al., 2016; 2019). In 2019, Hong
Kong experienced the most severe bout of social unrest in the city's history. The Anti-
Extradition Law Amendment Bill Movement proceeded in the form of public gatherings and
demonstrations and was eventually wiped out in the same year because of a government
crackdown. However, political tension again mounted between June 2020 and July 2020,
after Beijing's decision to promulgate the NSL.

Faced with the pandemic, the Hong Kong government has implemented various social
distancing policies to control community transmission. The most significant is the Prohibition
On Group Gathering Regulation (POGGR), first implemented on March 29, 2020, which
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forbids any form of gathering of more than four people in any public place2. With Hong
Kong experiencing social unrest over the past two years, social distancing policies not only
reduced regular social gatherings such as dining but, more importantly, prohibited and
restricted public gatherings and demonstrations. When the outbreak stabilized from mid-April
through late June of 2020, the Hong Kong government actively reviewed and revised its
social distancing policies. Under the "Suppress and Lift" strategy, the government reviewed
the feasibility of relevant measures and made amendments to restrictions on mass gatherings
on a timely basis. Infection risks of certain activities and premises/places, and overseas
practices were also taken into account in such decision making. As the confirmed case
numbers were on a decline at the time, the government decided to relax restrictions. The
maximum allowable size of group gatherings under the POGGR was raised to 8 people on
May 8, and then further lifted to 50 people on June 19. Modifications in these social
distancing policies are reflected in the frequency and scale of mass gatherings held during the
period. In fact, in relation to the relaxation of social distancing orders, different categories of
population movement including transport, parks, and shopping all showed an upward trend in
July 2020, according to the Google Mobility data 3.

Concurrent with the relaxation of social-distancing restrictions (e.g., the maximum size for
group gatherings raised to 50 people) and the enactment of the NSL, massive demonstration
events reappeared in the city in late June and early July of 2020. Beginning on June 20,
public gatherings and demonstrations against the NSL were frequently held in different areas
of the city. Figure 1 summarizes the major gatherings that occurred during this period. The
largest anti-NSL march took place on July 1, the date when anti-authoritarian public
gatherings are held every year in the past. According to local media, an estimate about tens of
thousands of protesters came onto the streets of Hong Kong Island to protest against the
enactment of the NSL. The government reported that around 370 people were arrested by
police officers.4 Although participants in these demonstrations and protest activities usually
adhered to certain precautions such as wearing masks, strictly maintaining social distancing
norms was difficult since these gatherings were subject to unpredictable turns of events,
including confrontation and violence. While the pandemic was still ongoing and the
government's Stay-at-home Initiative was still active, Hong Kong’s opposition camp
organized an unofficial poll, the proclaimed pro-democratic primary election, on July 11 and
12, convening more than 20,000 people to join the offline voting.5 In a nutshell, the
conjuncture of the lift of POGGR and the announcement of the NSL collectively triggered the
emergence of public gatherings and demonstrations in Hong Kong, which could have created
a risk of virus transmission. Therefore, in this paper, we try to uncover the impact of relaxing
social distancing policies and the subsequent mass gathering events on COVID-19

2 Public place is defined in the Regulation as “a place to which the public or a section of the public may or are
permitted to have access from time to time, whether by payment or otherwise”.
3 For inside-city population movement data provided by the Google, see
https://www.google.com/covid19/mobility/
4 HKSAR Government Press Release, https://www.info.gov.hk/gia/general/202007/01/P2020070200001.htm
5 The number of valid ballots recorded throughout the two-day vote was provide by the opposition camp (see
https://www.nbcnews.com/news/world/over-600-000-hong-kong-cast-protest-vote-against-new-n1233614). The
number was not recognized by any official governmental departments.
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transmission in Hong Kong. It should be noted that other forms of gatherings and social
interactions had also resumed to a certain degree following the relaxation of social distancing
orders back then. However, mass gatherings are characterized by greater uncertainty and risks
of viral spread because of high degree of social mixing. In fact, many cases in the third wave
are recorded as infection from unknow sources (comprise as high as almost 40% of total
infections).6 There are certainly invisible transmission chains and environmental factors that
contributed to the large scale of transmission in the third wave in Hong Kong. According to
the Health Bureau, the third wave of outbreak mainly stems from community infections and
covers a wide range of regions and industries.7 Therefore, the research objective of this study
is to investigate the overall impact of mass gatherings on the third wave of COVID-19 local
outbreaks in Hong Kong after the lift of social distancing policy (i.e., the POGGR).

Fig 1: The timeline of a series of mass gatherings and public demonstrations in Hong
Kong in mid-2020
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It is also noted that Hong Kong has implemented restrictions on international and cross-
border travel and imposed compulsory quarantine requirements on people coming into the
city to manage the risk of case importation. Given that imported cases were largely blocked,
many surmise that the rebound and catastrophic proliferation in local cases (see Fig 2) may
be related to these mass gathering events and public demonstrations.

6 Chief Executive Carrie Lam: Active participation in testing urged
https://www.news.gov.hk/eng/2020/08/20200825/20200825_122029_411.html
7 Health Bureau. https://www.healthbureau.gov.hk/blog/en/2020/post_20200823.html
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Fig 2: Daily COVID-19 new cases diagnosed in Hong Kong

Source: Centre for Health Protection under the Health Department,
https://www.chp.gov.hk/en/features/102997.html

Epidemiological trajectory of COVID-19

From mid-April to late June of 2020, the outbreak in Hong Kong had stabilized, but
beginning July 5, the outbreak began to re-erupt, with an upsurge in COVID-19 infections
(mostly classified as local cases). The situation suddenly deteriorated into the largest
outbreak Hong Kong had then seen, which was commonly referred to as "the third wave" of
local outbreak. The figure of daily new infections reached another peak on July 27 (145 new
cases) and the city's daily new case numbers remained in the triple digits for 7 consecutive
days, bringing the city's total number of infections to 2884 and total related deaths to 23 as of
July 28. Moreover, most of the infections reported in July were local cases, and the source of
infection for more than 40% of these cases was unknown (Gov. HK, 2020). Figure 2 shows
the changes in new confirmed cases of COVID-19 in a daily basis in Hong Kong from June
15 to July 31, 2020. It is unclear why the pandemic in Hong Kong suddenly rebounded after
the city's initial success in controlling the outbreak. While mainland China has been able to
keep the spread of COVID-19 under control since May 2020, Hong Kong and places such as
the United States and Europe have seen a second or third wave of the outbreak. Yet, we are
still unclear about the source and transmission routes of the third wave of the local outbreak
in Hong Kong.

Given all these, this study investigates the question of whether mass gatherings, particularly
in the form of public gatherings and demonstrations, contributed to the third wave of local
outbreak of COVID-19 in Hong Kong. If our results suggest that mass gatherings have
contributed to the increase in COVID-19 cases, it would be reasonable to strengthen social
distancing measures, for example, group gathering bans, as a key strategy in containing the
COVID-19 outbreak. In this regard, our study can generate useful insights on pandemic
control for countries considering or starting to relax their restrictions on mass gatherings to
adapt to the new normal amid this pandemic. Furthermore, our findings may help
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governments improve their policymaking capacity to combat other novel infectious diseases
in the future. Large-scale public demonstrations in Hong Kong during mid-2020 and the
associated consequences can be a reference for policymaking in many places to manage
various mass gatherings such as religious events in the face of other new epidemics.

Method and Materials

We utilize a quantitative approach, namely, Synthetic Control Method (SCM) for a
comparative study to assess the impact of mass gathering on the local spread of COVID-19 in
the local communities of Hong Kong. This analysis has a premise that the only way we can
assess the influence of mass gatherings on the local transmission of COVID-19 is to compare
the policy outcome with an appropriate counterfactual control unit (Adhikari et al., 2018). In
reality, it would be difficult to find a city sufficiently similar to Hong Kong to act as the
control unit. By selecting a combination of possible comparison units that is most
representative of Hong Kong's characteristics before the interventions, SCM suggests a
systematic way of reproducing the counterfactual (Zhu & Tan, 2021, 2022). To achieve this,
an epidemiological database and an aggregator of city-level demographic, socioeconomic,
and climatic data for more than 200 Chinese cities (including cities in the mainland and
Macau) were crosswalked. Based on this combined dataset, an SCM was then employed to
simulate a "synthetic Hong Kong" as the counterfactual that is not affected by mass
gatherings and public demonstrations. Controlling for other confounding factors that could
affect the COVID-19 transmission, such as city-level socioeconomic characteristics and
climatic conditions, the synthetic control obtained from this simulation shares similar pre-
intervention characteristics with Hong Kong. By comparing the actual number of confirmed
cases with the estimated outcomes in our counterfactual model, we can empirically assess the
impact of mass gatherings on the transmission of COVID-19 in Hong Kong.

Mass gatherings, especially public gatherings and demonstrations re-emerged after various
social distancing policies, including the prohibition on group gathering regulation (POGGR),
were lifted in June. These mass gatherings have a higher level of social mixing and thereby
pose a higher risk of virus spreading, compared to routine activities (e.g., school, work,
shopping, entertainment, etc.) and social gatherings, Our hypothesis is that mass gatherings
happened after the relaxation of social policy contributed to the third wave of COVID-19
outbreaks in Hong Kong since early July.

Small-size gatherings (less than 50 people) after the relaxation of POGGR on June 19 may
also confound the influence of mass gatherings on the transmission of COVID-19. In our
empirical model, we apply two approaches to rule out this confounding effect. First, the
potential donor units (i.e., all mainland cities) in our SCM model also adopted restrictions on
public gatherings during the entire study period. According to the guidelines announced by
the Chinese authorities, public gatherings were to be avoided in principle for medium and
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high-risk areas and only be held prudently in regions with low-level risk8. All urban and rural
communities were to strictly manage community activities and restrict large-scale public
gatherings until the end of the pandemic9. In fact, as of July 2020, mass gatherings of more
than 200 people were still prohibited in most mainland cities. Therefore, the synthetic control
constructed from these donor units can rule out the confounding effects of the relaxation of
POGGR (up to 50 people as of June 19) because it theoretically allows for mass gatherings of
more than 50 people (normally up to 200 people), yet Hong Kong only allows for gatherings
of 50 people. If Hong Kong still exhibits a higher (and increasing) infection rate than the
synthetic control during the intervention period, it is unlikely to have been caused by these
small-size public gatherings. Second, we conducted robustness tests by changing the
intervention point in the simulation model. Specifically, we use each of the 10 days following
June 20 as the intervention point (i.e., June 20, 21, 22…), which gives us a longer control
period to partially account for the impact of the relaxation of POGGR on June 19. Allowing
for a longer control period that also takes into account the incubation period and the testing
lags in COVID-19 detection.

Another advantage of using a longer control period is that the model can evaluate the
effectiveness of those social distancing policies implemented until mid-June. In fact, the daily
reported number of new cases of COVID-19 in Hong Kong had stabilized and remained low
(almost 0 local cases in a single day, see Fig 1) until the beginning of July. This suggests the
various social distancing policies implemented before the occurrence of the large-scale public
gatherings and demonstrations in June and July were effective in containing local
transmission. The empirical model elaborated below can more accurately identify any nodes
of exceptional increases in daily new confirmed cases during the control period.

Nonetheless, we recognize that this study has significant limitations. There are disparities in
the social and political environment of Hong Kong and mainland cities, for example, Hong
Kong has a unique political system and economic autonomy, and different levels of citizen
compliance to government policies as well as public trust in government. Such embedded
discrepancies might affect our estimation of the impact of mass gatherings' impact on
COVID-19 transmission. While acknowledging the importance of capturing these factors in
reproducing the synthetic control, we are not able to control them accurately in the SCM
model due to their time-invariant nature. Instead, we introduce an extended pre-intervention
period in our model and simulate the synthetic control with a border span of predictors over
that period. Therefore, the “synthetic HK”, which is constructed by the optimal weighted
combination of potential donor cities, is simulated with the greatest possible matching for all
predictors and variables of interest, and any unobservable factors can be implicitly captured
variables.

8 Available at
http://english.www.gov.cn/policies/latestreleases/202004/08/content_WS5e8dd995c6d0c201c2cc07a7.htm
9 http://www.gov.cn/xinwen/2020-01/30/content_5473104.htm
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Data and data sources

This research aggregates a COVID-19 database with city-level socioeconomic, demographic,
and climatic data for more than 200 Chinese cities to construct a counterfactual context for
comparative analysis to examine the impact of Hong Kong's mass gatherings, public
demonstrations in particular, on the local outbreak of COVID-19. The existing literature
suggests that the development of pandemics is catalyzed by multiple factors. Therefore, we
incorporate a number of predictors into our SCM models, including epidemiological variables
(i.e., the number of new/total confirmed cases), city-level basic characteristics, and climatic
parameters. Additionally, three epidemiological variables are also included as predictors to
estimate the trends of infection in the14-day before intervention and preclude any
confounding factors associated with the systematic discrepancies between the simulated
synthetic control and HK. They are, the average of total case numbers, average of total cases
per 10,000 persons (taking population size into consideration), and sum of daily new cases,
which are calculated for the 14-day period before the intervention point. Our SCM models
take the indicators of new and total cases daily to capture the outbreak situation scenario and
use other city-level variables as predictors. All the city-level data is gathered from several
sources.

City-level COVID-19 data
The primary data of our SCM analysis is the city-level daily epidemiological data of the
COVID-19 outbreak. A China Data Lab collected the daily epidemiological data between
June and July and the data are openly accessible on Harvard Dataverse. We retrieved data
from this dataset on the daily number of new and total cases for each prefecture-level city in
the mainland, as well as for Hong Kong and Macau.

Demographic and socioeconomic data
A number of studies have suggested that regional socioeconomic factors, such as the
concentration level of population, total factor productivity, the degree of unemployment,
accessibility to healthcare influence how fast and how far infectious diseases are transmitted
(Tuckel et al., 2006; Mamelund et al. 2013; Grantz et al., 2016; Adda, 2016; Clay et al., 2019;
Li et al., 2021; Zhu & Guo, 2021; Zhou et al., 2022; Zhu et al., 2022). It is, therefore,
necessary to consider demographic characteristics (average population, number of households,
population density). Demographic statistics of each city were derived directly from the latest
version of the China City Statistical Yearbook (2019), which provides information in 2018.
To calculate the population density of these cities, we utilized geographic data on the total
land area from the same data source. For data on Hong Kong and Macau, we used 2018
demographic data from the official Statistical Yearbooks provided by their Socioeconomic
and Statistics Departments. We incorporated several predictor variables to control for
socioeconomic factors in our empirical model, including the level of economic development
(represented by total GDP, per-capita GDP) and public health capacity (represented by the
number of hospitals, and the numbers of doctors and hospital cots per 10,000 people).
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Natural meteorological parameters
Previous research has demonstrated that weather conditions and air quality potentially play a
role in the spread of COVID-19 (Bannister-Tyrrell et al., 2020; Chen et al., 2020; Jia, Ding et
al., 2020; Shi et al., 2020; Wang, Jiang et al., 2020; Tosepu et al., 2020; Zhu et al., 2022) and
other infectious diseases (Ye, Zhang et al., 2004; Tan et al., 2005; Bi, Wang & Hiller, 2007;
Clay et al., 2015; Clay et al., 2019). Hence, this research considers various daily natural
meteorological factors, including air quality index (AQI), average temperature, wind speed,
and relative humidity, to simulate the counterfactual scenario and estimate case numbers.
These factors are all proven to impact the transmission of an epidemic in the previous
literature, but many studies on COVID-19 transmission do not control for their effects.
Simulated by the SCM models, the constructed synthetic control in the absence of mass
gatherings has similar climate conditions to Hong Kong; therefore, we are able to control for
any influence on the estimated case number of COVID-19.
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Climatic parameters for cities in mainland China were derived from the China Meteorological
Data Service Centre, which provides hourly records of common meteorological factors such
as temperature, relative humidity as well as wind speed at each meteorological observatory
station. We calculated daily numbers by averaging the hourly data for each variable. For each
city with epidemiological data, we used an Empirical Bayesian Kriging interpolation to
compute the values of the three meteorological elements in ArcGIS. Kringling is a statistical
approach for predicting the best possible location in a geographic region, which has been
widely used in meteorological applications, agriculture, geoscience, and many other
disciplines because of its minimized prediction error. Because it offsets the deviations
resulting from the semivariogram model, the Empirical Bayesian Kriging method is more
resilient than conventional Kriging techniques (Krivoruchko, 2012). Therefore, we adopt the
Empirical Bayesian Kriging as the interpolation method of meteorological parameters in this
study; the parameters in the model are the default settings of the software. The daily climatic
parameters of Hong Kong are collected from the Hong Kong Observatory, and those of
Macau SAR are extracted from the Meteorological and Geophysical Bureau.

We captured the dynamics of air quality in each city by Air Quality Index (AQI), which is
measured based on the number of six atmospheric pollutants (e.g., SO2, PM2.5, PM10)
detected at all inspection stations within the city border. The source of Chinese cities’ air
quality data is from Harvard Dataverse. Each record includes information on the daily
average, maximum, minimum, and standard deviation value of AQI. In this study, we use the
daily average AQI to represent the air quality conditions of each city. Meanwhile, World Air
Quality Index (WAQI) project provides daily AQI data of all air quality monitoring stations
in Hong Kong and Macau. The values of daily AQI in Hong Kong (or Macau) were
calculated by averaging the daily data of all air quality monitoring stations in the region.

Model Specification

Through optimal weighted linear simulations using data from over 200 Chinese cities, we
simulate a "synthetic Hong Kong" that has many of the same features as the actual Hong
Kong. We estimate COVID-19 transmission patterns using such synthetic control for a
counterfactual scenario in which there were no public gatherings and demonstrations in Hong
Kong. Based on aggregated epidemiological data from chosen cities, we estimate the trend in
the daily numbers of new and total cases in this counterfactual circumstance (i.e., donor
units). We may analyze the influence of mass gatherings on COVID-19 transmission in local
communities in Hong Kong by comparing the real epidemiological trajectory recorded in the
city with simulated trends, and therefore measure the effectiveness of the HK government's
social distancing regulations.

As discussed above, our SCM model uses a long control period starting on May 1 and ending
on June 19 to eliminate the confounding effects of all other events that happened during the
same period as the public gatherings and demonstrations studied. As the first large-scale
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political gathering in our study period happened in Hong Kong on June 20, the beginning of
the intervention period is designated as June 20. During the intervention period, a series of
public gatherings and demonstrations occurred (see Fig 2). We expect that significant
differences in infection numbers between the synthetic control and Hong Kong may not be
observed for days immediately following June 20. This is because of the existence of a
median incubation period of 5 days and a potential testing and reporting lag of 1-2 days.
People infected during public gatherings and demonstrations may not be reported as
confirmed cases until several days after the protest. Taking into account these potential lags,
we also conduct robustness checks by using each of the 10 days following June 20 as
different intervention points (i.e., June 21, 22, 23…).

The SCM method has been widely used to assess the impact of political reforms and various
economic policies. (Abadie & Gardeazabal 2003; Billmeier & Nannicini, 2013; Abadie et al.
2010; Pieters et al., 2016; Barlow et al., 2017; Adhikari et al., 2018; Marrazzo & Terzi, 2017).
Rather than selecting a real city as the counterfactual for comparison, our SCM combines
several comparison units (i.e., over 200 Chinese cities) from the donor city pool by an
optimum weight of each donor cities, to construct one a synthetic Hong Kong as
counterfactual. The inherent advantage of the SCM is that it offers a data-driven method for
determining a matching counterfactual used for comparative analysis. As a result, issues of
ambiguity, endogeneity, and self-selection biases can be eliminated.

The following is an illustration of our SCM model: ��� is defined as COVID-19 infections
diagnosed in city� at time �. There are �+1 cities, with Hong Kong as the first city (� = 1)
being subject to intervention (i.e., the occurrence of mass gatherings in the form of public
gatherings and demonstrations) after time �0 (i.e., June 20), and the remaining � cities
(selected cities in China) are donor cities for simulating the “synthetic Hong Kong”. The
number of cases for city � with the occurrence of mass gatherings is set as ���

� and the
estimated infection trend in the synthetic control is set as ���

�, the later hypothetically assume
that mass gatherings had not occurred at time � ∈ �0 + 1, � . Thus, ���

� is observable as
���

� = ���
� + ������

where ���is the impact of mass gatherings on COVID-19 cases number for city � at time � (i.e.,
from June 20 onwards). As Hong Kong, that is, � = 1, is the only city that affected by mass
gatherings, ��� is the indicator written as the following:

��� =1 ���� = 1, � > �0
0 ��ℎ������

��� indicates whether city � was influenced by public gatherings in period � (i.e., from June
20 onwards).� takes value 1 for the treated unit (j=1), and 0 otherwise. For � > �0, �1� =
�1�

� − �1�
� gives the net effect of mass gatherings on the increase of COVID-19 infections.

The objective is to assess the value of �1�0+1, �1�0+2, …, �1�.
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In accordance with the algorithm stated in Abadie et al. (2010), we assume that ���
� is given

by a factor model
���

� = ��+ ���� + ���� + ���

where �� = ��1, …, ��� ' is a (� × 1) vector of predictors that are observable and irrelevant to
the occurrence of mass gatherings, as presented in Table 2. �� = �1�, …, ��� is a (1 × �)
vector of parameters. Also, a (1 × �) vector of common factors which are unobservable is
captured by �� = �1�, …, ��� . A � × 1vector of unknown factor loadings is represented by
�� = ��1, …, ��� '. Unobservable ephemeral impacts with zero mean are depicted by the error
terms ���. A constant factor loading is described by ��., a common factor which is unknown.

The actual case number reported in Hong Kong are observable and we have ���
� = �1�, but we

have no way to observe how many infected cases would be under the conditions of the
synthetic control �1�

� within the period from �0 + 1 tp �. In order to approximate the value of
�1�

� , we utilized the procedure stated in Abadie & Gardeazabal (2003). A (� × 1) vector of
weights � = �2, …, ��+1 ' is simulated so that we can have �=2

�+1 �� = 1� , and �� ≥ 0 for
� = 2, …, � + 1.

By using a weighted average of donor cities with observed outcomes and covariates among
the time period before the intervention point, we estimate �1� and �1 for the phase before the
occurrence of intervention, i.e., � ≤ �0. Thus, � = �2 , …, ��+1 is computed for � ∈
1, �0 , such that

�1� =
�=2

�+1

��� ���

�1 = �=2
�+1 ��� ��,

Once � is estimated, the effect of intervention (i.e., mass gatherings) at � = �0 + 1, �0 +
2, … can be captured by

�1� = �1� −
�=2

�+1

��� ���

� is the optimum weight for the combination of control units (i.e., donor cities), which
minimizes the disparities of predictor and outcome variables between the reality and the
counterfactual among the pre-intervention phase. We utilized the technique described by
Abadie et al. (2010) to get the optimal weights, which technically minimizes the mean
squared prediction error of all predictors and outcome variables over the pre-intervention
period.

Results
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After data cleaning, 282 Chinese cities were included in the donor pool for constructing the
synthetic control. In our baseline model in Panel A, we designate June 20, one day after the
lift of POGGR, as the beginning of the intervention period, when Hong Kong began
observing mass gatherings including a series of public gatherings and demonstrations. Table
1 demonstrates the distribution of sample weights of the selected comparison cities for the
synthetic control simulated in Panel A. We constructed the synthetic control and estimated
the trends of the daily numbers of COVID-19 new and total cases in Model 1 and Model 2.
The synthetic control obtained in Model 1 was constructed using 6 donor cities, while that
obtained in Model 2 was from 4 donor cities. Table 2 demonstrates the balance of predictor
variables during the pre-intervention period, indicating that the characteristics of the synthetic
control are very similar to those in Hong Kong before the occurrence of public gatherings and
demonstrations. This suggests that our synthetic control simulated from the SCM models is a
good fit with the real Hong Kong in the pre-intervention period.

Table 1: Distribution of sample weights in the donor pool for synthetic Hong Kong
Panel A: intervention point on June 20

Model 1 (Fig 3)
Variable of interest: new cases

Model 2 (Fig 4)
Variable of interest: total cases

Name of the donor
city

Weight in the
synthetic
control

Name of the donor
city

Weight in the
synthetic control

Jilin 0.265 Jilin 0.47
Suihua 0.261 Shanghai 0.427
Shanghai 0.221 Beijing 0.192
Macau 0.159 Wuhan 0.089
Beijing 0.082

Huanggang 0.012

Table 2: Pre-intervention balance of predictor variables in Panel A (June 20 as the
intervention point)

Pre-intervention characteristics during the control period (May 1 – June 19)
Model 1 Model 2

Real HK Synthetic
HK

Synthetic
HK

# of new cases in the past 14 days 22.14 6.90 12.5
Preintervention 14-day (June 6- June 19) average
of daily total case numbers 1,111 271.81 1,078.14

Preintervention 14-day (June 6- June 19) average
of daily number of total cases per 10,000 people 1.49 1.47 1.18

Preintervention 14-day (Jun 6- Jun 19) sum of
new confirmed cases 25 19.43 24.83

Region GDP (million yuan) 2,398,046 1,069,235 1,750,217
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# of persons per sq.km (population density) 6,736.89 4,238.87 1295.06
# of Hospital Cots per 10,000 persons 54.27 59.83 90.98
# of Doctors per 10,000 persons 19.66 39.12 52.75
Average Temperature (℃) 28.31 20.18 20.03
Relative Humidity (%) 81.92 71.30 72.29
Wind Speed (m/s) 5.29 2.76 2.68
Air Quality Index (AQI) 44.28 45.21 52.03

Fig 3 shows the comparison between the actual and simulated trends of COVID-19 new cases
confirmed on a daily basis. The residual between the two trajectories after the date of
intervention can be interpreted as the impact of mass gatherings after the relaxation of social
distancing order, i.e., POGGR, on COVID-19 transmission in local communities. As shown
in the figure, Hong Kong saw a much higher number of daily new infections than the
synthetic control that models a hypothetical situation assuming no mass gathering happened.
This indicates that public gatherings and demonstrations in Hong Kong contributed to the
increase in new cases on a daily basis. In the absence of public gatherings and demonstrations,
Hong Kong would have no more than 2 new cases registered on any single day from June 20
until the end of July. To explain this in another way, we can calculate the sum of new
infections by adding up these predicted daily new cases. For the first 14 days after the
intervention date, Hong Kong would have observed around 16 new cases if the POGGR had
not been lifted, while the actual number of new cases was 120 during this period. After the
first two weeks, the outbreak was under control in the synthetic control, with at most 1 new
case confirmed in any single day throughout the rest of July. However, the actual infection
numbers in Hong Kong continued to rise dramatically, and as many as 2145 new cases were
recorded from June 20 to July 31, significantly more than the 23 new cases estimated in the
synthetic control during the same period. This confirms that the protest and demonstration
activities in late June and early July contributed to a considerable growing trend of daily new
cases.

Fig 3: Impact of mass gatherings (after the lift of POGGR) on COVID-19 new cases
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Fig 4A shows the trends of total infections reported and estimated in our synthetic control.
The visual comparison suggests that a significant increase in the number of cumulative
infections may be attributed to public gatherings and demonstrations during the period from
June 20 to the end of July. Before the intervention point (June 20), the figure of total
infections in both scenarios (i.e., with and without mass gatherings) is similar, but after June
20, the gap between the two lines widens sharply. This gap is also represented as a line graph
in Fig 4B, indicating that public gatherings generally increase COVID-19 infections in the
local communities of Hong Kong. The results suggest that if Hong Kong had not been
affected by public gatherings and demonstrations after June 20, the outbreak would have
stayed at a moderate level, with just around 1128 total cases by July 31), while actual
infections exceeded 3000 cases. More importantly, the actual growth rate of infections in the
city is significantly higher than that of the counterfactual model. During the period from June
20 to July 31, the total number of infections increased by 2144 cases in Hong Kong, and the
average daily growth rate of total cases10 was 2.63%. In our counterfactual model, however,
there was an increase of only 32 cases in the number of total infections; the average daily
growth rate was a mere 0.07%. Our results suggest that, if Hong Kong had not been affected
by mass gatherings after June 20, the city could have controlled the increase of new
infections and kept the number of total infections at a low level.

Figure 4: Impact of mass gatherings (after the lift of POGGR) on COVID-19 total cases

To cover a longer control period and to consider the long incubation period of COVID-19
(i.e., delayed symptom onset after infection), as well as delays in testing and reporting, we
changed the intervention point to conduct robustness tests. Here we focus on Model 1, which
simulates the trend in daily new cases. If the results in Model 1 are robust, we can infer that
the results of Model 2 are also robust. Using the same predictors and outcome variable, we

10 Calculating the average daily growth rate of total infections: Hong Kong has 1128 total cases on June 20
compared to an estimated number of 1125 total cases in the synthetic control. On July 31, Hong Kong counts
3272 cases while the synthetic control has 1164 cases, in total. From June 20 to July 31, The average daily
growth rate in Hong Kong is denoted by r and can be computed from 1128 (1+ r)41=3272. Similarly, the average
daily growth rate in the synthetic unit rc can be computed from 1125(1+ rc)41=1164.
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use each of the 10 days after June 20 as the intervention point (i.e., June 21, 22, …, 30) in
each panel to re-examine our estimation model. Fig 5 shows the results obtained in each
Panel with different intervention points. The sample weights of comparison cities that
construct the synthetic Hong Kong are provided in the Appendix.
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Fig 5: Impact of mass gatherings (after the lift of POGGR) on the number of new cases
of COVID-19 (with intervention point changed)
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When we changed the intervention point (i.e., the starting date of lifting of public gathering
restrictions in Hong Kong), we obtained different estimates of new cases in the respective
synthetic controls. However, the adjusted results still show that the actual number of daily
new cases of COVID observed after the lift of public gatherings and the occurrence of and
demonstrations is, in general, higher than the counterfactual estimated in the synthetic
controls obtained in all the Panels. Except for Panels I, J, and K, other Panels using an earlier
intervention point indicate that the counterfactual estimates of new case numbers are initially
close to the actual number. After some fluctuations, the synthetic trends stabilize in the later
stage, while the actual infections numbers grew sharply. If we impose longer lags (as in Panel
I, J, and K), meaning that we have a later intervention point, the gap between infection
numbers under the two scenarios becomes more significant even in the early stage of the
intervention.

Table 3 summarizes the magnitude of the impacts during the 10-day and 30-day periods after
the intervention point. In our baseline configuration of the SCM model (Panel A), which uses
the start of protest activities (June 20) as the intervention point, the size of the impact of mass
gatherings in the first 10-day period after the POGGR relaxation is a growth of 62 new cases.
The 30-day impact is an increase of 737 new cases. These increases in new cases due to the
impact of mass gatherings account for 87.58% and 97.23% of the total new cases
accumulated over the respective time periods. We also conduct robustness checks for these
results by extending the control period to capture the lags in the onset of symptoms and
testing delays, where we use each of the 10 days after June 20 as the intervention point.
When considering shorter lags (1-5 days), we estimate that, on average, protest activities
contribute to an increase of around 57 new infections (or 75% of total new cases) over the 10-
day post-intervention period and an increase of around 961 new infections (or 97.66%) over
the 30-day period. When we consider longer lags (6-10 days), the impact is more profound,
with an increase of 101 new cases (or 91.82%) and 1553 new cases (or 99.36%) over the 10-
day and 30-day periods, respectively. Therefore, we conclude that public gatherings and
demonstrations in Hong Kong in late June and early July contributed significantly to the new
wave of COVID-19 infections that began in early July.
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Table 3: Summary of the impact of mass gatherings (after the relaxation of social
distancing policy) on the increase of new cases during the 10-day and 30-day periods

after intervention, taking June 20 and each of the 10 days afterward as the intervention
point

Baseline Robustness tests

Panel A
Panel
B

Panel
C

Panel
D

Panel
E

Panel
F

Panel
G

Panel
H

Panel
I

Panel
J

Panel
K

Intervention point June 20 June
21

June
22

June
23

June
24

June
25

June
26

June
27

June
28

June
29

June
30

10-day
period after
intervention

Hong
Kong 76 77 72 81 70 79 75 89 102 124 162

Synthetic
control

14 13 21 18 24 17 15 13 9 8 4

Difference 62 64 51 63 46 62 60 76 93 116 158

30-day
period after
intervention

Hong Kong 758 830 857 970 1072 1193 1312 1437 1581 1685 1799

Synthetic
control 21 20 25 22 34 17 16 13 9 8 5

Difference 737 810 832 948 1038 1176 1296 1424 1572 1677 1794
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Discussion

This study investigates whether the relaxation of social distancing policies and the subsequent
occurrence of public gatherings contributed to a new wave of local outbreak (also known as
the third wave) in Hong Kong. After more than two years into the pandemic, the global
scientific community has gained significant understanding of COVID-19 regarding the
relationship between small group gatherings and viral transmission, especially in indoor
settings. However, previous studies leave a research gap in terms of how mass gatherings in
public places, which generally have lower perceived risks but higher uncertainties, could
influence local transmission. By examining the series of public demonstrations that happened
in Hong Kong following its relaxation of the Prohibition On Group Gathering Regulation (i.e.,
the POGGR), this study provides important empirical evidence for the implementation of
social distancing policies in limiting mass gatherings and controlling virus transmission.

Various public gatherings and demonstrations took place in Hong Kong from June 20, 2020
onwards. These events were collectively influenced by the enactment of the NSL in the city
and the coincidental relaxation of POGGR. Although people usually were wearing masks
during public gatherings and demonstrations, these activities still tend to be highly crowded
with increased physical contact, creating openings for virus transmission and increasing the
rate of COVID-19 infection. Some have suspected that the third wave was a result of the
loosened quarantine requirements, especially the quarantine exemptions for special overseas
arrivals such as seafarers.11,12 However, the majority of cases during the investigation period
(over 83%) were reported as local infections13, implying that the lifting of social distancing
order played a role in influencing the transmission during Hong Kong’s third wave. Using an
aggregated dataset of epidemiological, city-level meteorological and socioeconomic data, our
SCM modeling results clearly evidence that public and social mass gatherings that occurred
after the relaxation of social distancing policy had a sizable impact on COVID-19
transmission in Hong Kong’s local communities. Our findings indicate that from June 20 to
July 31, 2020, Hong Kong observed an infection rate, as captured by the mean daily growth
rate of total cases, substantially greater than that estimated by the counterfactual control unit
(2.63% versus 0.07%). This transmission rate has led to exponential growth in new cases. We
also estimate that public gatherings and demonstrations increase the number of new
infections by 62 cases (or 87.58% of total new cases) over the 10–day period after they first
occurred on June 20 and by 737 cases (or 97.23 %) over the 30-day period. These findings
are in line with local clinical experts who argued that the propagated outbreak in the third
wave derived from increased social gatherings during dragon boat festival (June 25) and July
1 holiday (Sridhar, 2020).

11 Government anti-epidemic advisers and medical experts estimate that the new wave of outbreaks originated
from a number of people who were exempted from quarantine and introduced into the community via taxi
drivers.
12 What Hong Kong can do to avoid a total lockdown and a fourth wave of Covid-19 cases. South China
Morning Post.
https://sc.mp/k852a?utm_source=copy_link&utm_medium=share_widget&utm_campaign=3095460
13 Details of previous COVID-19 cases in Hong Kong, reported by the Centre for Health Protection (CHP) of
the Department of Health (DH). https://www.chp.gov.hk/files/pdf/local_situation_covid19_en.pdf
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Based on our aforementioned findings, this research provides important guidance for local
anti-pandemic policymaking in Hong Kong. We recommend that it is vital for the Hong
Kong government to strengthen its law enforcement to caution any large-scale public
gatherings during the pandemic, including public gatherings and demonstrations. Our
findings suggest that participants in large-scale gatherings are susceptible to infection when
the virus has not been completely controlled. Based on Hong Kong's experience during the
third wave, the relaxation of social distancing restrictions in late June 2020 created a loophole
for large-scale public gatherings. In particular, the lifting of the POGGR on June 19 created
opportunities for small- or medium-sized gatherings and even large-sized demonstrations
(though unpermitted) to occur. Our empirical findings corroborate that these gatherings have
led to a resurgence in local COVID-19 infections. Also, social distancing policies are of great
importance in limiting mass gatherings and managing the risk of local transmission of
COVID-19 when herd immunity has not yet gained.

Hence, in this third wave of Hong Kong’s local outbreak, it was crucial to tighten restrictions
on mass/group gathering promptly to curb the transmission of potential community infections
and alleviate pressure on the public health system in Hong Kong. In fact, in August 2020,
Hong Kong tightened the POGGR to a limit of 2 people, and later lifted this to 4 people in
September 2020. As a result, the third wave gradually came under control. Acknowledging
the uncertainty of the COVID-19 pandemic and the unique political and social challenges in
Hong Kong, the government departments should commit to containing the pandemic for
public society and welfare. The health department should attentively assess and monitor risks
stemming from any mass gatherings and prompt adjustment of social distancing policies,
accordingly. Public leaders of other functional constituencies should cooperate to address the
root causes of social unrest in society, improve social welfare and rebuild trust in government
among citizens. In such a way, the effectiveness of the government's anti-pandemic policies
can be guaranteed.

Our findings on the significant impact of mass gatherings on the transmission of COVID-19
in Hong Kong also provide strong evidence for the necessity of implementing social
distancing policies in other parts of the world, especially in places where large-scale
gathering events are also being experienced. The tragedy of the deadly 2022 Halloween
Crush in South Korea has made the entire nation mourn, yet its immediate impact on the
possible eruptive COVID-19 new cases may cause the nation to suffer much graver losses. In
the face of other novel infectious diseases (NID) in the future, social distancing policies, and
particularly those restrictions on group gatherings, should be prioritized once the local
outbreaks are observed, and should be maintained until the outbreak is completely curbed.
Constantly changing social distancing orders will create confusion and inconvenience among
the public, as well as hinder the effectiveness of prior social distancing efforts.

In conclusion, this research not only makes significant contributions to the scientific literature
on the impact of mass gathering on the transmission of COVID-19, but also has important
implications for policymakers in designing more effective policies to control the pandemic.
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First, by paying attention to public gatherings that often take place in outdoor environments
where ventilation is usually better, our research can help complement existing empirical
studies that focus on how gatherings in indoor settings may influence virus transmission. The
findings of this study will help advance our understanding of the transmission patterns and
sources, and thereby provide scientific guidance for managing the risks of mass gathering
events. Second, the study in Hong Kong not only helps the local government improve its
policymaking capacity to combat the pandemic, but also contributes to relieving pandemic
situations in other places around the world that are also experiencing mass gatherings (e.g.,
large-scale religious events). Hence, our findings can generate useful insights on pandemic
control for countries considering or starting to relax their restrictions on group gatherings to
adapt to the new normal during a pandemic.

Lastly, it is noted that this study does not address the more transmissive SARS-CoV-2
variants that were later observed in multiple countries. This is because the earliest SARS-
CoV-2 variant, i.e., Alpha, first appeared in the U.K. in November 202014 and our study
period is restricted to between May and July 2020. Moreover, our study period also does not
reflect on the ongoing situation wherein many cities/countries in the world have gained
substantial immunity to COVID-19. Nevertheless, the past anti-pandemic experiences are still
important lessons for the future. This study examines how public gatherings can influence the
transmission of contagious viruses when herd immunity is yet to form. This can help to
provide crucial evidence for evaluating the use of social distancing policies against early-
stage outbreaks of other novel infectious diseases in the future. Such evidence is pivotal for
both the scientific community and the general public.

14 For more information about the evolution of the SARS-CoV-2 virus, see WHO’s official declaration at
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ and Yale Medicine’s guide to the coronavirus
variants at https://www.yalemedicine.org/news/covid-19-variants-of-concern-omicron.
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Appendix

Donor cities and weights for synthetic controls in the robustness tests
Panel B Panel C Panel D Panel E

City Weight City Weight City Weight City Weight
Shanghai 0.292 Macau 0.294 Chengdu 0.31 Changdu 0.25
Macau 0.265 Beijing 0.193 Macau 0.254 Macau 0.243
Longnan 0.124 Longnan 0.151 Beijing 0.206 Beijing 0.216

Shuangyashan 0.078 Shuangyashan 0.146 Shanghai 0.146 Dazhou 0.154
Beijing 0.075 Dazhou 0.1 Changdu 0.058 Shuangyashan 0.128
Guigang 0.059 Guigang 0.074 Wuhan 0.016 Wuhan 0.009
Shantou 0.051 Shangrao 0.023 Suqian 0.007
Wuhan 0.016 Wuhan 0.019 Xiaogan 0.005
Changdu 0.037
Xiaogan 0.003 Wuhan 0.015

Panel F Panel G Panel H Panel I
City Weight City Weight City Weight City Weight
Macau 0.262 Chongqing 0.319 Changdu 0.3 Macau 0.393
Beijing 0.216 Macau 0.29 Macau 0.297 Shenzhen 0.305
Shanghai 0.134 Beijing 0.24 Beijing 0.228 Beijing 0.229
Shantou 0.19 Changdu 0.151 Chongqing 0.134 Shanghai 0.041

Shuangyashan 0.073 Xiaogan 0.02 Wuhan 0.015
Changdu 0.056 Suqian 0.015 Dongying 0.012
Chongqing 0.046 Wuhan 0.007 Nanjing 0.004
Wuhan 0.016
Chuzhou 0.005
Huanggang 0.001

Panel J Panel K
City Weight City Weight

Shanghai 0.464 Shenzhen 0.373
Macau 0.282 Macau 0.337
Changdu 0.102 Beijing 0.23
Tianjin 0.055 Shanghai 0.042
Haidong 0.048 Wuhan 0.013
Beijing 0.022 Nanjing 0.005
Wuhan 0.014
Shannan 0.004
Chongqing 0.002


