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Abstract18
This paper proposes a novel analytical framework that integrates spatial statistics and machine19
learning to identify relationships between e-commerce and distribution facilities. The framework20
incorporates centrographic analysis, global and local spatial association measurements, and a21
recently popularized interpretable machine learning approach – gradient boosting decision trees22
(GBDT) into warehousing location choice analysis. This framework is applied to the 2003-201623
ZIP Codes Business Patterns data in three large metropolitan areas in Texas, US (i.e., Dallas–24
Fort Worth, Austin, and Houston). Thematic maps reveal the spatial clustering of areas with25
more e-commerce activities but less served by logistics facilities. This study does not observe the26
phenomenon of logistics sprawl occurs in the study region. The GBDT results show the key27
factors that explain warehousing location choice are industrial activities and transportation28
network accessibility. The results also suggest, as compared to Dallas-Fort Worth and Austin, the29
relationship between warehouses and e-commerce establishments is much weaker in Houston – a30
maritime gateway for goods entering and leaving. Implications for local freight transportation31
planners and decision-makers are discussed.32
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1. Introduction1
The total US retail e-commerce sales volume has changed dramatically over the last ten years2
(US Department of Commerce, 2021a). The e-commerce share of total retail sales in US retail3
increased from 4.2% to 11.3% during 2010-2019. Due to the COVID-19 pandemic, more4
consumers and businesses have taken to e-commerce almost overnight. In the second quarter of5
2020, the percentage reached 15.7% (US Department of Commerce, 2021b). Globally,6
warehouses are increasing along with e-commerce and supply chain changes. Warehouse7
location selection has received increasing attention for its potential impacts on local economic8
activity and the natural and built environment. In the urban setting, logistics and online shopping9
firms gained customer base and loyalty through fast delivery times and promised delivery10
windows, such as UPS and FedEx next-day delivery programs and Amazon Prime’s promise of11
two-day shopping. The externalities of freight and logistics activities include greenhouse gas12
(GHG) emissions, air pollutants, and road traffic congestion and safety concerns (Demir et al.,13
2015). The purposed study will develop a novel analytical framework and apply it to identify14
relationships between e-commerce and distribution facilities and present how other factors are15
associated with warehousing location choice.16

Extensive studies have used econometric models to identify, describe, interpret, and17
predict how key variables of interest are associated with location choices of warehousing or18
logistics facilities (e.g., Jaller et al., 2017; Yuan, 2019; Kang, 2020a; Sakai et al., 2020; Guerrero19
et al., 2022). These variables could be categorized as socioeconomic characteristics of local20
communities, transportation network accessibility, transportation and industrial activities,21
regional agglomeration effects, and local policy supports. In recent years, social science fields,22
such as natural language processing, image processing, healthcare information management, and23
travel demand and traffic accident analysis, have widely adopted advanced data analysis methods24
to examine statistical relationships among the variables of interest (James et al., 2013; Murdoch25
et al., 2019). In this line of thought, this study adopts a recently popularized interpretable26
machine learning (ML) approach – gradient boosting decision trees (GBDT) to seek a better27
understanding of warehousing location choice in the e-commerce era. This approach has several28
advantages compared to traditional multiple regression and discrete choice models. For example,29
it relaxes predefined relationships (e.g., linear, quadratic, and exponential functions). It also30
captures high-dimensional interactions among explanatory variables (i.e., when two or more31
processes work together, they produce a synergy effect that is greater than their cumulative32
effects when used individually), providing more accurate predictions (Friedman, 2001; Ding et33
al., 2018). Knowing nonlinear and threshold effects of influential variables (e.g., e-commerce34
facilities, access to transportation infrastructure, and industrial activities) on warehousing35
location choice is crucial for effective planning implementations, which reveals the costs and36
benefits across the intervals. Besides, the application of GBDT ranks the relative importance of37
our variables of interest. Uncovering how substantial e-commerce growth is as compared to other38
influential factors can provide useful information to local planners and policymakers.39

Considering all aspects mentioned above, this study incorporates centrographic analysis,40
global and local spatial association measurements, and ML approaches into warehousing location41
choice analysis. The analytical process can be helpful for extracting bivariate associations42
between warehousing and e-commerce activities from a multi-dimensional perspective. For43
instance, the centrographic analysis measures and visualizes the spatial movements of facilities’44
weighted centroids. Thematic maps of local spatial association measurements provide evidence45
of those dedicated areas for policy provisions. This study conducts empirical analysis using data46
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from 2003 to 2016 for three large metropolitan areas (MSA) in Texas – Dallas–Fort Worth,1
Austin, and Houston. Research datasets are mainly developed based on ZIP Code Business2
Patterns (ZBP), American Community Survey (ACS), and TxDOT Open Data Portal.3

The key contribution of this study is twofold: First, we adopt a novel analytical4
framework for analyzing warehousing location choice. Second, to the authors’ knowledge, this is5
one of the first studies using longitudinal data of e-commerce establishments, distribution6
facilities, and transportation and industrial activities collected in Texas, to reveal relationships7
between e-commerce and distribution facilities. Logistics sectors contribute substantially to8
Texas's economy. Most prosperous logistics hubs have a competitive business environment and a9
sufficient number of warehouses and distribution centers to process, store, and distribute their10
goods (Finch et al., 2017). However, existing literature has focused on studying warehousing11
location choice in the cites and metropolitan areas of the Pacific Coast, such as Southern12
California counties and Seattle, Washington (e.g., Dablanc et al., 2014). Logistics services and13
freight transportation are more vital to the economy of Texas than that of other inland states.14
Texas’s border with Mexico runs for over 1,200 miles, one of the top US trading partners. There15
is a business-friendly climate in Texas, as well as urban agglomeration effects that allow freight16
and logistics industry to thrive there (Beyer, 2021). A longitudinal study of determinants of17
warehouse location choice for local Texas is not only meaningful to local planners and policy18
makers on infrastructure investments and provisions, but also verifying whether the current19
knowledge can be generalized into a different geographical context.20

This paper begins with a literature review on the relationship between e-commerce and21
distribution facilities, factors associated with warehousing location choice, and recent research22
progress on interpretable machine learning, followed by an explanation of research design and23
methods. Data is then described. Results are organized into three sections: (1) movement patterns24
of warehousing and e-commerce activities; (2) bivariate spatial relationship between25
warehousing and e-commerce activities; and (3) multivariate analysis results. The final section26
concludes remarks, policy implications, and future research.27

28
29

2. Literature Review30
2.1 E-commerce and warehousing activities31
In any supply chain, warehousing serves as an intermediate storage location between two32
successive stages, which includes receiving, storing, order picking, and shipping (Bartholdi &33
Hackman, 2014; Gu et al., 2007). Supply chain management considers not only how goods34
distribution systems should be designed but also how systematic decisions affect the quality of35
service and logistics costs (Onstein et al., 2019). The evolution of e-commerce has influenced the36
latter aspect largely and transformed the supply chain ecosystem, bringing manufacturers and37
consumers together at a deeper level. Every home can become a delivery point in an e-commerce38
era. To a certain extent, today’s warehouses and distribution centers (W&DCs) are designed39
specifically to meet the needs of online retailers – serving customers directly in the business-to-40
consumer (B2C) process (Boysen et al., 2019; Onstein et al., 2019; Xiao et al., 2021). Boysen et41
al. (2019) summarized the new challenges in warehousing management as small orders, wide42
selections for a broader public, speedy deliveries, and deliveries within the time frame promised.43
Fulfilling these requirements relies on a higher level of warehousing automation (e.g., automated44
guided vehicles (AGV)-Assisted Order Picking Systems and Autonomous Robots Moving45
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Shelves) (Boysen et al., 2019), but also depends on the spatial allocation of warehouses and other1
logistics facilities (Xiao et al., 2021).2

Online shopping and omnichannel distribution are eliminating the space-time constraints3
of traditional shopping activities. Merchandise, commodities, and services can be delivered4
anywhere and can be purchased at any time. Under certain circumstances, e-commerce is eco-5
friendly compared to traditional retail (e.g., Jaller & Pahwa, 2020). Depending on where logistics6
facilities are located along the supply chain, e-commerce services have different environmental7
impacts. During 2012-2016, downtown Los Angeles has seen a number of smaller W&DCs8
operated by retailer giants (e.g., Amazon, Walmart, and Target) (Jaller et al., 2017). This can be9
explained by the possible benefits from proximity to customers as well as the improved quality10
of service (Woudsma et al., 2016; Onstein et al., 2019). In the following study, Jaller et al. (2020)11
suggested the evolution of e-commerce has shifted W&DCs closer to urban centers.12
Consequently, this trend will result in an increase in the number of trips made by trucks and13
other vehicles, resulting in increased traffic, more emissions, and greater safety concerns for14
urban centers. More recently, Rai et al. (2022) introduced the term “proximity logistics” to15
describe the development of logistics facilities in high-demand areas, which are essentially urban,16
dense and mixed-use. This phenomenon is opposed to the well documented logistics sprawl,17
namely, ‘the spatial concentration of logistics facilities in peripheral regions of metropolitan18
areas (i.e., moving away from inner urban areas toward more suburban and exurban areas) in a19
given time period’ (Dablanc & Rakotonarivo, 2010).20

21
2.2 Factors that affect the location choice of warehouses22
Existing studies have shown great interest in knowing what factors related to warehousing23
location choice. These factors can be summarized as socioeconomic characteristics of local24
communities, transportation network accessibility, transportation and industrial activities,25
regional agglomeration effects, and local policy supports (e.g., Giuliano et al., 2016; Giuliano &26
Kang, 2017; Guerrero et al., 2022; Jaller et al., 2017; Jaller et al., 2020; Kang, 2020a; Sakai et al.,27
2020; Yuan, 2019). There are several research reports published that discuss spatial dynamics of28
W&DCs in California. Giuliano and her colleagues (2016, 2017) analyzed spatial trends of29
logistics industry and examined possible explanatory factors. At the descriptive level, W&DCs30
activity is distributed approximately with population and employment centers. For example, the31
four largest metropolitan areas in California account for nearly 90% of all W&DCs jobs.32

The estimated statistical models in two reports (Giuliano et al., 2016; Giuliano & Kang,33
2017) suggest that there was a significant decrease in the correlation between employment34
density and W&DCs activity. The signs and significances of explanatory variables show that35
access to transportation infrastructure, such as distances to intermodal terminals, highways, and36
seaport, and the share of linked industry sectors in the region are important factors to W&DCs37
activity. Yuan (2019) found that W&DCs are more likely to be located in neighborhoods with38
higher percentage of minorities in the Los Angeles metropolitan area. However, warehouse39
developers are not often attracted to low-income neighborhoods due to a lack of convenient40
amenities, including land availability and transport access.41

At a more disaggregated level, Kang (2020a) examined the factors associated with the42
location choices of more than five thousand warehousing facilities in Los Angeles. This study43
revealed that facility size and built year influence warehousing location choice significantly. To44
be more precise, lower land prices and proximity to airports/intermodal terminals are most45
influential to warehouses built after 2000; while those warehouses built before 1980 are more46
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likely to be influenced by market conditions, labor availability, and proximity to seaports/1
intermodal terminals. In another study, using the data from the Paris Region, France, Sakai et al.2
(2020) analyzed the locational characteristics for multiple types of logistics facilities, including3
storage facilities operated by logistics service providers, manufacturers, and distributors. The4
unveiled determinants are consistent with above mentioned studies. This study further indicated5
the importance of the conducive sociopolitical environments (i.e., zoning policies and land use6
regulations). Guerrero et al. (2022) incorporated inbound and outbound of freight flows into the7
analysis of warehousing activities. Yet, little is known about the exact or actual relationship8
between e-commerce and distribution facilities in different contexts.9

The common point of previous studies is that researchers usually rely on econometrics10
methods for multivariate analysis, such as simultaneous equation model, discrete choice model,11
censored regression model, and spatial regression. These approaches, however, are restricted to12
the predefined model structure, and/or allow specific assumptions for data distributions and13
parameters. Recent developments in the field of interpretable machine learning (ML) offer new14
opportunities for a fine-grained analysis.15

16
2.3 The application of interpretable machine learning algorithms17
ML methods are widely used in transportation and logistics research and exhibit powerful18
predictive performance. These methods, however, are often criticized for their lack of19
interpretability, making it difficult to explain the relationships between outcomes and20
independent variables. Hence, a growing body of research has been conducted to improve the21
descriptive accuracy and relevancy of machine learning (e.g., Alsaleh & Farooq, 2021; Koushik22
et al., 2020; Murdoch et al., 2019). A range of model-agnostic methods for interpretation have23
been proposed, including feature importance, partial dependence, individual conditional24
expectation (ICE), accumulated local effects (ALE), and localized interpretable model-agnostic25
explanations (LIME) and Shapley values for local prediction (Molnar, 2022). Cheng et al. (2019)26
adopted feature importance – represented by the Gini impurity index – to estimate the relative27
importance of socio-demographics and built environment characteristics on travel outcomes. The28
average impact of explanatory variables on model predictions can be illustrated by accumulating29
local effects. Gao et al. (2021) utilized this approach to investigate threshold and interaction30
effects of different factors on air travel satisfaction of passengers, which yielded easily31
interpretable analysis results.32

Gradient boosting decision trees (GBDT) is one of the most popular interpretable33
machine learning methods due to its advantages of high prediction accuracy and fast34
computation (Friedman, 2001). The method has been applied to traffic safety analysis (Tang et35
al., 2019), travel demand prediction (Ding et al., 2018), and traffic control optimization (Mao et36
al., 2021). Jin et al. (2022) compared the model performance of GBDT with multiple statistical37
regressions, such as ordinary least squares, spatial lag model, and spatial error model. They38
found that GBDT shows highly superior performance – measured by model goodness-of-fit and39
root mean square error - in estimating how transit accessibility influences housing prices. In the40
works of Ding et al. (2018) and Yang et al. (2022), GBDT is used to show the existence of41
nonlinear and threshold relationships between the built environment and travel outcomes, i.e.,42
vehicle miles travelled (VMT) and walking duration. The identified nuanced relationship could43
offer tailored environmental interventions that benefit sustainable urban mobility visions.44

Despite recent research developments discussed above, the bivariate relationship between45
e-commerce and distribution facilities has not been well explored yet. The present study fills this46
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gap and provides empirical evidence on whether and how e-commerce matters in the occurrence1
of proximity logistics or logistics sprawl phenomenon. The proposed novel analytical framework2
in the following section not only measures spatial correlations between e-commerce and3
distribution facilities, but also reveals nonlinear relationships between warehousing location4
choice and its well-documented determinants.5

6
7

3. Research Design and Methods8
Figure 1 presents the analytical framework of this study, which consists of three stages – data9
collection, bivariate statistics with spatial visualization, and multivariate analysis. We create a10
research dataset based on ZIP Code Business Patterns (ZBP), TxDOT Open Data Portal, and11
American Community Survey (ACS). The dataset contains information on warehousing and e-12
commerce activities, transportation activities, transportation network accessibility, and relevant13
socioeconomic factors at the zip code level. Then we extract bivariate associations between14
warehousing and e-commerce activities from a multi-dimensional perspective. Later, multiple15
regression model and gradient boosting decision trees (GBDT) model are built to support fine-16
grained investigation for the relationship between warehousing and e-commerce activities, and17
identify how other key variables influence warehousing location choice. The main research18
findings and policy implications are derived based on three sequential phases of analysis.19

20

21
Figure 1. The workflow of the research protocol22

23
3.1 Centrographic analysis24
Centrographic analysis has been commonly used and accepted as an effective tool to investigate25
the spatial movements of warehouses or logistics facilities (e.g., Dablanc et al., 2014; Jaller et al.,26
2017; Guerin et al., 2021). In this study, centrographic analysis is conducted for the number of27
warehousing and distribution centers (W&DCs) and e-commerce establishments. We calculate28
the weighted centroid of facilities’ locations each year, and then measures the distances from29
these weighted centroids to the zip code population weighted centroids. The weighted centroid of30
a certain type of facilities (i.e., warehouses or e-commerce establishments) is calculated as31
follows (Yeates, 1974):32

33
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where �� latitude coordinate of the weighted centroid in a given year; �� longitude coordinate5
of the weighted centroid in a given year; �� latitude coordinate of facility � (zip code); ��6
longitude coordinate of facility � (zip code); �� number of facilities within a particular zip code.7
To track spatial movements, this study visualizes the spatial locations of weighted centroids of8
W&DCs and e-commerce establishments from the year 2003 to 2016. Also, the distances9
between the facilities’ weighted centroids and the population weighted centroids are calculated,10
which can provide helpful information on whether our facilities of interest were moving away11
from or moving to urban centers during the study period.12

13
3.2 Bivariate local indicator of spatial association (LISA)14
As this study cannot access to the detailed spatial coordinates of industrial establishments, we15
estimate the spatial correlations between the numbers of W&DCs and e-commerce for adjacent16
spatial units. A bivariate local indicator of spatial association (LISA) statistic is implemented17
(Anselin et al., 2010). Bivariate LISA is a local Moran's I metric that intends to uncover the18
relationships between two spatial factors. Below are the equations for calculating global and19
local bivariate Moran's I statistic:20

21

��−����_�ℎ� = �

� � �����
� � ���(�� −�)(��−� )��

� (�� −�)2
� (�� −�)2��

, (3)22

23
��
�−����_�ℎ�' = �

� (�� −�)2�
�� −� � ��� �� −�� , (4)24

25
where ��−����_�ℎ� and ��

�−����_�ℎ�' are the global and local bivariate Moran’s I for e-commerce26
and warehousing activities, respectively; N is the total number of spatial units; ��� is the queen27
contiguity spatial weight matrix to explore the spatial relationship between unit i and unit j; �� is28
the number of e-commerce establishments of the unit i;� is the average value of the number of29
e-commerce establishments in the study area (i.e., one Metropolitan Statistical Area); �� is the30

number of W&DCs of the unit �; and� is the average value of the number of W&DCs in the31
study area. The value of ��−����_�ℎ� or ��

�−����_�ℎ�' is between -1 and 1. If one spatial unit32
having a large number of e-commerce establishments is surrounded by spatial units with33
adequate W&DCs, then the local bivariate Moran’s I will return to a postive value. The opposite34
spatial pattern is represented by a negative value. The magnitude of spatial dependence can be35
reflected in the estimated value – the stronger spatial correlation, the larger absolute value. To36
determine whether Moran's I value is statistically significant, a permutation test is applied, and37
the pseudo-significance level is set at the 5% level with 999 permutations (Anselin et al., 2010).38
This study visualizes local spatial correlations between the number of e-commerce39
establishments at a specific unit and the mean value of the number of W&DCs at all neighboring40
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units by using cluster maps. There are five categories of local spatial correlations: High-High1
cluster (��−������ℎ�), High-Low cluster (��−������ℎ�), Low-High cluster (��−������ℎ�),2
Low-Low cluster (��−������ℎ�), and not statistically significant.3

4
3.3 Gradient Boosting Decision Trees (GBDT)5
A multiple linear regression model is first estimated for multivariate analysis. Based on the6
results, we can gain a preliminary understanding of the factors affecting warehousing location7
choice. However, the linearity assumption has been criticized for resulting in severely biased8
estimates. A certain explanatory variable's relationship with the number of W&DCs will change9
over the full range of values. In some areas, businesses and customers are less willing to shift10
massively to digital marketing services. Inventory management and timely delivery of goods11
may be overlooked by communities with a lower level of digital maturity. Therefore, the12
connection between e-commerce and distribution facilities in these areas is weaker than others13
having more e-commerce fulfillment services. This study uses a recently popular machine14
learning method – gradient boosting decision trees (GBDT).15

Friedman (2001) and many other studies adopted this approach have documented the16
details of the GBDT algorithm in several intuitive ways (Ding et al., 2018; Dong et al., 2019; Jin17
et al.,2022; Mao et al., 2021; Tang et al., 2019; Tao et al., 2020; Wang & Ozbilen, 2020; Yang et18
al., 2022; Zhang & Haghani, 2015). As suggested by its name, there are several single decision19
trees that are merged together to reach the results. A feature of this algorithm is that it20
automatically captures the interactions between predictors. Each successive model in gradient21
boosting attempts to predict the error left over by the previous model based on the error left over22
by the previous model. By summing up all the decision tree results, we can predict the outcome.23

Relative importance and partial dependence of explanatory variables are often used to24
interpret the “black-box” model structure. The relative importance of explanatory variable �� is25
calculated as follows:26

27
���
2 = 1

� �=1
� ���

2 (��)� , (5)28
29

���
2 �� = �=1

�−1 �� {����� �� ���� � �� �� �������� ��}� , (6)30

31
where J is the number of leaves on each tree; �� is the mth tree function;�� represents the32
improvement in the squared error by making the jth split using based on predictor ��. The relative33
importance of all explanatory variables adds up to 100%.34

Partial dependence plots show marginal effects of our variables of interest on the35
predicted response variable. Mathematically, the partial dependence of �(�) on �� can be36
formulated as follows:37

38
���(��) = ���[�(��, ��)] = �(��, ��)��(��)� , (7)39

40
����(��) = 1

� �=1
� �(��, ���)� , (8)41

42
where �� are the features whose specific effects on the predicter response variable are to be43
estimated; �� are other explanatory variables; �(��) is the probability density function of ��; n44
represents the sample of model estimation. In partial dependence, the model output is45
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marginalized over the distribution of these other predictors. Partial dependence plots also include1
interactions between predictors due to the model's ability to handle interaction effects among2
predictors.3

4
5

4. Data and Study Area6
This study performs spatial analyses for e-commerce activity and locations of warehousing and7
distribution centers (W&DCs) in Texas. the ZIP Code Business Pattern (ZBP) database contains8
the measurements of two types of activities. This database provides information about the9
number of establishments of each industrial classification (NAICS) at the zip code level. In its10
classification system, the NAICS uses a six-digit coding system to categorize different types of11
industries. W&DCs are classified under NAICS 493. In this study, e-commerce activity refers to12
the number of establishments primarily engaged in retailing all types of merchandise using non-13
store means, in terms of Electronic Shopping and Mail-Order Houses, which are under NAICS14
454110. Over the past decade, the evolution of e-commerce has led to a surge in demand for15
warehousing and logistics facilities in Texas. Amazon, FedEx and Lowe's are three of the16
companies that have built many new fulfillment centers and delivery stations in response to the17
accelerating e-commerce growth (Mahoney, 2020; Thomas, 2021). Figure 2 shows the spatial18
distributions of W&DCs and e-commerce establishments based on the 2016 ZBP database.19
Clearly, more extensive warehousing and e-commerce activities are located in the Houston-The20
Woodlands-Sugar Land Metropolitan Statistical Area (Houston), the Dallas-Fort Worth-21
Arlington Metropolitan Statistical Area (Dallas–Fort Worth), and the Austin–Round Rock-22
Georgetown Metropolitan Statistical Area (Austin) than the rest of Texas. The analyses below23
thereby focus on the three selected MSAs.24

25
Figure 2. Spatial distribution of W&DCs and e-commerce establishments in 2016 in Texas26

27
We build the research dataset that covering the time period 2003-2016 for two reasons.28

First, the North American Industry Classification System (NAICS) is updated every five years to29
keep up with changes in economics. Before 2017, many mini-storage businesses are classified30
under NAICS 493 Warehousing and Storage. These establishments are NAICS 531130 Lessors31
of Miniwarehouses and Self-Storage Units in 2017 and afterwards (Woudsma et al., 2016;32
Woudsma & Jakubicek, 2020). The change will result in data consistency if we combine the pre-33
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2017 and post-2017 datasets together. Second, the COVID-19 pandemic has caused supply chain1
disruptions since the beginning of 2020. When the time period before the pandemic is considered,2
empirical evidence can be obtained under normal circumstances, which removes the COVID-193
impact on the analytical results.4

The logistics businesses are expected to have the most immediate connection with5
warehousing business (Kang, 2020b). This study thus considers the numbers of establishments in6
air transport, water transport, and truck transport from the ZBP database. These transportation7
activities are under NAICS 481, 483, and 484. As consumers, shippers, and receivers of freight8
shipment, manufacturing, wholesale, and retail trade sectors can be involved in goods9
distribution. The intensities of these sectors can provide evidence for the diversity of industrial10
activities. Recent studies have revealed a direct link between these sectors and warehouse11
operations. The proximity to manufacturing and retail facilities means being close to distribution12
channels, transportation, and relevant infrastructure (Yuan, 2019; Jaller et al., 2017; Kang,13
2020a). To quantify the intensity, this study divides the number of establishments of each14
industrial sector by the land area at the zip code level. The number of establishments engaged in15
manufacturing, wholesale, and retail industries are under NAICS 31, 42, and 44, respectively.16
The land area information comes from the 2010 US Census.17

Other variables of our interest are also measured at the zip code level. For the proximity18
to customers and transportation networks, the nearest distances between the centroid of each19
spatial unit and four types of transportation infrastructure are calculated, in terms of highways,20
seaports, airports, intermodal facilities. The calculations are based on the TxDOT GIS Open Data21
Portal1. The 2015-2019 American Community Survey (ACS) 5-year Estimates offers the most22
recent socioeconomic factors. This study adopts median household income, race and ethnicity23
groups, housing occupancy status, and household internet subscriptions as explanatory variables.24
The data on population density comes from the 2010 US Census.25

There are 1,675 ZIP Code Tabulation Areas (ZCTAs) in Texas that have complete26
information on W&DCs, e-commerce establishments, transportation activities, intensities of27
industrial activities, and access to transportation infrastructure at each year during the study28
period. We have 23,450 observations in total. However, in some ZCTAs, socioeconomic factors29
provided by the 2015-2019 ACS for certain years are missing. Those observations were excluded30
from the multivariate analyses. Finally, we have 22,554 valid observations. Table 1 summarizes31
the descriptive statistics of final sample characteristics for four geographic contexts.32

33
34
35
36

11) Highway: https://gis-txdot.opendata.arcgis.com/datasets/txdot-texas-highway-freight-
network/explore?location=31.139063%2C-100.049294%2C6.69;
2) Seaport: https://gis-txdot.opendata.arcgis.com/datasets/txdot-seaports/explore?location=28.021200%2C-
95.665187%2C8.05;
3) Airport: https://gis-txdot.opendata.arcgis.com/datasets/texas-airports/explore?location=31.173825%2C-
100.059833%2C6.72; 4) Intermodal Facility: https://gis-txdot.opendata.arcgis.com/datasets/txdot-national-highway-
system/explore?location=30.986103%2C-100.084847%2C6.69

https://gis-txdot.opendata.arcgis.com/datasets/txdot-texas-highway-freight-network/explore?location=31.139063%2C-100.049294%2C6.69
https://gis-txdot.opendata.arcgis.com/datasets/txdot-texas-highway-freight-network/explore?location=31.139063%2C-100.049294%2C6.69
https://gis-txdot.opendata.arcgis.com/datasets/txdot-seaports/explore?location=28.021200%2C-95.665187%2C8.05
https://gis-txdot.opendata.arcgis.com/datasets/txdot-seaports/explore?location=28.021200%2C-95.665187%2C8.05
https://gis-txdot.opendata.arcgis.com/datasets/texas-airports/explore?location=31.173825%2C-100.059833%2C6.72
https://gis-txdot.opendata.arcgis.com/datasets/texas-airports/explore?location=31.173825%2C-100.059833%2C6.72
https://gis-txdot.opendata.arcgis.com/datasets/txdot-national-highway-system/explore?location=30.986103%2C-100.084847%2C6.69
https://gis-txdot.opendata.arcgis.com/datasets/txdot-national-highway-system/explore?location=30.986103%2C-100.084847%2C6.69
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Table 1. Data Summary
Descriptive Statistics of Variables Dallas Austin Houston Others

Mean SD Mean SD Mean SD Mean SD
ZIP Code Business Patterns

Warehousing and Distribution Centers (W&DCs) 1.29 2.94 0.56 1.34 1.08 2.24 0.47 1.83
E-Commerce Establishments 1.67 2.68 2.32 3.22 1.24 2.11 0.29 0.77
Industrial activities
Manufacturing intensity (establishments/mile2) 2.02 4.55 1.17 2.09 2.65 5.02 0.45 2.49
Wholesale trade intensity (establishments/mile2) 4.03 11.20 1.89 3.73 5.55 15.16 0.95 7.48
Retail trade intensity (establishments/mile2) 8.19 19.14 6.12 11.71 8.97 15.40 2.54 12.86
Transportation activities
Air transport (establishments) 0.42 2.25 0.22 0.88 0.44 1.95 0.15 0.73
Water transport (establishments) 0.04 0.22 0.02 0.15 0.35 0.89 0.03 0.19
Truck transport (establishments) 6.29 6.99 3.75 4.19 5.71 6.33 4.25 9.80

TxDOT GIS Open Data Portal
Access to transportation infrastructure
Distance to highway (mile) 1.56 2.22 1.52 1.90 1.57 1.98 3.88 5.70
Distance to seaport (mile) 230.83 20.37 120.46 17.92 29.55 18.30 214.49 166.13
Distance to airport (mile) 6.54 3.73 8.65 4.14 7.59 3.91 10.59 6.99
Distance to intermodal facility (mile) 12.55 13.13 76.64 15.70 8.90 10.77 52.23 35.81

2015-2019 American Community Survey 5-year Estimates
Median household income (in $1000) 71.48 28.46 79.70 29.45 69.20 31.67 52.84 17.77
Race
% of population is white 73.5% 79.0% 69.8% 84.9%
% of population is black 13.4% 6.0% 16.6% 6.8%
% of population is asian 4.8% 4.1% 4.9% 0.9%
% of population is other races (including American Indian and Alaska Native
alone, Native Hawaiian and Other Pacific Islander alone, and others) 8.3% 10.9% 8.7% 7.4%

Ethnicity
% of population is non-Hispanic 74.4% 69.3% 66.3% 64.8%
% of population is Hispanic 25.6% 30.7% 33.7% 35.2%
Housing occupancy status
% of occupied housing units 90.8% 89.0% 87.3% 77.8%
% of vacant housing units 9.2% 11.0% 12.7% 22.2%
Internet subscriptions in household
% of households have internet subscription 83.5% 84.8% 81.7% 73.0%
% of households have internet access without a subscription 2.9% 2.7% 2.5% 3.7%
% of households do not have internet access 13.6% 12.5% 15.8% 23.4%

2010 US Census
Population density (1000*persons/mile2) 2.10 2.45 1.45 2.14 2.36 2.44 0.51 1.20

Number of observations before combing ACS data 4046 1316 3360 14728
Number of observations without missing 4018 1316 3234 13986
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5. Results
5.1 Spatial movement patterns of warehousing and e-commerce activities
Table 2 Changes in the number of warehouses
Year Dallas Austin Houston Others
2003 316 39 212 386
2004 342 48 233 407
2005 345 47 226 427
2006 362 54 237 440
2007 375 60 248 467
2008 387 55 247 502
2009 375 52 248 518
2010 364 51 258 510
2011 345 51 250 535
2012 367 47 277 510
2013 387 55 287 528
2014 405 57 290 519
2015 421 63 301 543
2016 437 63 315 562

Table 2 shows the changes in the number of warehouses in three MSAs and the rest of Texas
during 2003-2016. Roughly speaking, we observe a relatively even rise before 2008 and after
2012. The fluctuations occurred during 2008-2012 can be because of the disruptions caused by
the economic crisis. The number of W&DCs and the number of e-commerce establishments in
2003, 2010, and 2016 for three MSAs are visualized in Figure A1 (in Appendix). For example,
the number of W&DCs experienced a more substantial increase in the central part of the Dallas–
Fort Worth than other areas in this MSA. As to the number of e-commerce establishments, a
more noticeable growth occurred in the northeast part of Dallas–Fort Worth. In Austin, it seems
that the spatial patterns of W&DCs and e-commerce establishments were changing
synchronously. More increases took place in the west part, including Travis, Hays, and
Williamson counties. In Houston, the number of W&DCs increased significantly along the
highways I-10 and I-69. This increment synchronized with the trajectory of urban growth. The
number of e-commerce establishments increased across the Houston region, having a greater
concentration in the central part. Further analyses are needed to uncover the factors that drive the
changes in spatial patterns.

Figure 3 displays the yearly weighted geometric centers of W&DCs and e-commerce
establishments in three MSAs during 2003-2016. We infer that more e-commerce establishments
were built in the northern part of Dallas–Fort Worth than in the southern part. Clearly, the
weighted centroids of e-commerce establishments are moving to the western part of Houston. In
the Austin region, the weighted centroids were slightly shifting towards the east.

Regarding spatial changes in warehousing activities, as shown in Figure 3, there was no
apparent change of the weighted centroids in Dallas–Fort Worth and Houston during the study
period. In Dallas–Fort Worth, these weighted centroids were in close proximity to the Texas 183
TEXpress in the City of Irving, which is about 10 miles northwest of downtown Dallas. While in
Houston most centroids were within or close to the downtown area. Somewhat interestingly, we
spot a clear trace of the weighted geometric centers of W&DCs moving from the north to the
south of the Austin region. Austin is a fast-growing metropolitan area whose percentage of
urbanized land has increased significantly in the south side since 2006 (Guo & Zhang, 2021). In
sum, the trajectories of weighted centroids during 2003-2016 do not support the existence of a
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significant sprawl in logistics facilities in Texas. The results are in line with the literature. Cidell
(2010) reported that during 1986-2005, freight activities are more concentrated in central
counties in Texas cities, which is different from other US metropolitan areas. This can be
attributed to municipal policies that either ‘actively stimulate’ or discourage logistics activities.
The distances between warehousing centroids and central cities of three MSAs (i.e., 2010 US
census population-weighted centroids) on a yearly basis are displayed in Figure 4.

Figure 3. The weighted geometric centers of warehousing and distribution centers (W&DCs) and e-
commerce establishments in three MSAs during 2003-2016

Figure 4. Distances between warehousing centroids and central cities of three MSAs
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5.2 Bivariate association between warehousing and e-commerce activities
This study performs the correlation analysis for the key variables of interest in two dimensions:
for non-spatial relationships, Pearson correlations are used, while for neighbor dependencies,
bivariate spatial correlations are used. Table 3 presents the Pearson correlations between the
numbers of W&DCs and e-commerce establishments for all the years of research. The scales of
the estimated coefficients suggest that the correlations between W&DCs and e-commerce
establishments had varied over the years and across three geographic contexts. There is a much
closer relationship between e-commerce and distribution facilities in Dallas–Fort Worth and
Austin than in the Houston region.

Table 3. Pearson correlations between number of W&DCs and e-commerce establishments
Dallas Austin Houston

Year Coeff. Sig. Coeff. Sig. Coeff. Sig.
2003 0.3940 ** 0.2473 ** 0.1144 *
2004 0.4044 ** 0.3111 ** 0.1200 *
2005 0.4306 ** 0.3676 ** 0.0904
2006 0.4559 ** 0.4355 ** 0.0595
2007 0.3211 ** 0.4407 ** 0.0635
2008 0.3145 ** 0.4695 ** 0.0682
2009 0.3094 ** 0.4907 ** 0.0562
2010 0.3283 ** 0.4484 ** 0.0346
2011 0.3111 ** 0.4477 ** 0.1532 **
2012 0.3694 ** 0.2800 ** 0.1164 *
2013 0.3488 ** 0.2586 ** 0.1382 **
2014 0.3439 ** 0.2024 * 0.1507 **
2015 0.3386 ** 0.2089 ** 0.1249 *
2016 0.3318 ** 0.2122 ** 0.1392 **

Notes: ⁎⁎ Significant at the 95% level; ⁎ Significant at the 90% level.

The global bivariate Moran's I reported in Figure 5 suggest that geographical correlations
between W&DCs and e-commerce establishments are positive in three MSAs at the 2003, 2010,
and 2016. Somewhat surprisingly, we find that in Austin and Houston, the correlation was
weaker in 2016 than in 2003. The bivariate local indicator of spatial association (LISA) map
illustrates four kinds of spatial autocorrelations between warehouse and e-commerce activities.
Notably, the Low-High cluster refers to the areas with low intensity of e-commerce activities but
high intensity of warehousing activities, while the High-Low cluster refers to the inverse ones.
Most positive spatially matched areas (High-High clusters) are in urban central areas or dense
urban environments in three MSAs, suggesting these communities with high e-tailing delivery
demand are well served by logistics facilities (i.e., the number of W&DCs). In Houston and
Dallas–Fort Worth, the negative counterparts (Low-Low clusters) are mainly located in urban
peripheries. Particularly, we observe a substantial increase in the number of Low-Low clusters
located in urban peripheries of Dallas–Fort Worth during 2003-2016. Perhaps, these areas have a
low demand of e-tailing delivery services and do not have too many logistics facilities. There
also exists an obvious spatial mismatch. The Low-High clusters representing less e-commerce
activities, but more warehouse supplies, are more likely to locate in central urban areas and close
to High-High clusters. The number of High-Low clusters is decreasing during 2003-2016 in
Houston and Dallas–Fort Worth. These areas have more e-commerce activities but are less
served by logistics facilities (i.e., the number of W&DCs). As the market demand of rapid-
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delivery programs is continuously increasing, these areas are more likely to be the underserved
areas that need particular policy interventions and provisions.

5.3 Factors associated with warehousing location choice
The purpose of estimating regression models is to identify the factors that are significantly
associated with warehousing location choice and provide initial assessments of their influential
directions. The details are available in Table A1 (in Appendix). In the presence of
multicollinearity, the results of relative importance ranking, and partial dependence plots may be
biased. To address this concern, we report VIF values for all explanatory variables in all
statistical models, and find no multicollinearity exists. As expected, the number of e-commerce
establishments is positively associated with the number of W&DCs. The estimated margins
suggest that, after controlling for confounding factors, the correlation between e-commerce and
warehousing activities in Dallas–Fort Worth is stronger than that in the rest of the state.
Consistent with previous studies, the regression results show that transportation activities,
transport network accessibility, second-order industrial activities, and other socioeconomic
factors significantly affect warehousing activities. For example, warehouses are more likely to be
in the neighborhoods with better transportation infrastructure. As it has been reemphasized by
many new economic geography models, transportation cost is a key factor that affects the
location choice of individuals and firms from the economic perspective.

Table 4 presents the relative importance of independent variables that influence
warehousing location choice in three MSAs. The higher the relative importance, the more
contribution a variable makes to the prediction. E-commerce facilities contributes to 5.40%
(ranking 4th) and 6.23% (ranking 5th) in the models for Dallas–Fort Worth and Austin,
respectively. However, this variable seems much less pronounced in the model for Houston
(1.46% and ranking 18th). The results do not support spatial coincidence between warehousing
and e-commerce activities occurred in Houston during the study period. Container logistics and
maritime transport may largely influence warehousing location choice in Houston. Figure 6(a)
illustrates how the number of e-commerce establishment influences warehousing activities in
three MSAs differently. Nonlinearities and threshold responses do exist. For example, in Dallas–
Fort Worth, the number W&DCs increases sharply in a nearly-linear pattern within the range of
5-9 e-commerce establishments. The influences of e-commerce on warehousing activities
become trivial outside the range abovementioned. In Austin and Houston, the influence is not as
visible as that in Dallas–Fort Worth. In order to better understand nonlinear relationships
between e-commerce and distribution facilities, future studies should make use of data on online
purchases that retailers can gather and process more easily, whereas researchers have limited
access.

Collectively, access to transportation infrastructure, industrial activities, and race and
ethnicity groups are the most influential components determining the number of W&DCs in all
three models. The sum of three components is 62.44%, 73.82%, and 72.24% in the models for
Dallas–Fort Worth, Austin, and Houston, respectively. Considering the importance of two
variables representing industrial activities in all three models, we further provide partial
dependence plots. The relative contribution of manufacturing intensity to the variation in
predicting the number of W&DCs in models for Dallas–Fort Worth, Austin, and Houston is
18.53% (ranking 1st), 15.05% (ranking 2nd), and 21.55% (ranking 1st), respectively. Figure 6(b)
shows the margins of manufacturing intensity in three MSAs. An increment in manufacturing
intensity has a stronger positive impact on the number of W&DCs in Dallas–Fort Worth than
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that in Austin and Houston. This is quite similar to what we found for e-commerce
establishments. While the number of W&DCs in Austin is more sensitive to the changes in
manufacturing intensity than that in Houston.

Based on the reported relative contributions in Table 4, we infer that retails trade
intensity also influence warehousing activities largely. The margins plotted in Figure 6(c) show
that the influences of this factor fluctuate drastically across the whole observed range for all
three regions. In other words, the relationships between retail trade intensity and the number of
W&DCs vary greatly at different intervals. Further research is needed to show the mechanism of
the fluctuation.

Among access to transportation infrastructure variables, we found that the distance to
seaport has a relative larger contribution of 10.54% (ranking 3rd) in the Houston model than in
models for Dallas–Fort Worth and Austin. This can be because many warehousing and logistics
activities in the Houston region are related to maritime transportation. Figure 2 illustrates a
cluster of W&DCs around the Port of the Houston to southeast. This could also be the reason
access to intermodal facility is a more substantial factor (7.01% and ranking 5th) in Houston. The
intermodal facility gathers different modes of transportation and is strategically located to
improve regional mobility.

Race and ethnicity groups are much more influential predictors of the number of W&DCs
in Austin as compared to those in Dallas–Fort Worth and Houston. Particularly, the share of
other races population, in terms of American Indian and Alaska Native alone, Native Hawaiian
and Other Pacific Islander alone, and others, contributes the greatest (15.32% and ranking 1st) in
the Austin model among all single variables evaluated. The percentages of Black population and
Hispanic reaches 7.08% (ranking 4th) and 6.11% (ranking 6th) in the Austin model, respectively.
While workers of color make up 37% of the US labor force, they comprise more than two thirds
of workers in the warehousing industry and more than half in e-commerce2. The research results
reveal that workers of color are likely to play more important roles in logistics industry in Austin
than the other two studied MSAs.

The year-specific variable explains 2.54% (ranking 16th), 5.35% (ranking 8th), and 3.63%
(ranking 9th) of the variations in models for Dallas–Fort Worth, Austin, and Houston,
respectively. This trend variable can be seen as a proxy for inventory management practices,
warehouse automation solutions, and others that influence warehousing activities and are highly
correlated with time. However, they are not directly observable for this study. Figure 6(d)
visualizes the margins of the year-specific variable for three regions. Overall, there exists a
gentle and nearly-linear increase before 2007 or 2008, and then decreases slightly during 2008-
2012. After 2012, the number of W&DCs increases in all three regions as time goes by.

2 Link: https://laborcenter.berkeley.edu/pdf/2019/Future-of-Warehouse-Work.pdf

https://laborcenter.berkeley.edu/pdf/2019/Future-of-Warehouse-Work.pdf
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Figure 5. The spatial cluster maps between warehouse and e-commerce activities in 2003, 2010, and 2016
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Table 4. Relative Contributions of Independent Variables on Warehousing Activities
Dallas Austin Houston
Rel. Imp. (%) Rank Rel. Imp. (%) Rank Rel. Imp. (%) Rank

E-Commerce Facilities
Number of e-commerce establishments 5.40 6 6.23 5 1.46 18

Transportation activities 5.46 1.07 2.19
Number of air transport establishments 3.79 11 1.07 18 0.34 19
Number of water transport establishments 1.67 19 0.00 19 1.85 15

Access to transportation infrastructure
Distance to highway 6.34 4 5.85 7 2.57 12
Distance to seaport 2.34 17 3.10 12 10.54 3
Distance to airport 4.72 8 3.07 13 4.94 7
Distance to intermodal facility 3.80 10 2.71 15 7.01 5

Industrial activities
Manufacturing intensity 18.53 1 15.05 2 21.55 1
Retail trade intensity 5.89 5 12.19 3 10.49 4

Population density 9.40 3 2.74 14 11.74 2
Median household income (in $1000) 5.10 7 4.42 9 3.55 10
Race (base case: % of population is white)

% of population is Black 3.55 13 7.08 4 2.28 13
% of population is Asian 3.59 12 3.34 11 3.18 11
% of population is other races 2.27 18 15.32 1 4.34 8

Ethnicity
% of population is Hispanic 11.41 2 6.11 6 5.33 6

Housing occupancy status
% of vacant housing units 4.38 9 3.37 10 1.59 17

Internet subscriptions in household
% of households have internet subscription 2.69 14 1.60 16 1.69 16
% of households have internet access without a subscription 2.58 15 1.38 17 1.92 14

Year 2.54 16 5.35 8 3.63 9
Tuning Parameters and Model Fitness
Number of trees 24334 8244 13334
Number of leaves (tree complexity) 20 20 20
Shrinkage (learning rate) 0.01 0.01 0.01
Minimum number of samples in terminal nodes 15 15 15
Subsampling fraction 0.5 0.5 0.5
RMSE 0.672 0.440 0.577
Cross-Validated R-Squared 0.948 0.893 0.934
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(a) (b)

(c) (d)

Figure 6. The effects of key variables on the number of warehousing and distribution centers (W&DCs)
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6. Conclusion and Discussion1
The objective of the study is to propose a novel analytical framework to examine the relationship2
e-commerce and distribution facilities. Many studies have discussed the phenomenon of logistics3
sprawl and factors associated with warehousing location choice; however, the number of4
empirical studies with specific focus on the aforementioned relationship is still relatively small.5
To demonstrate the use of the framework, we construct the research dataset mainly based on6
2003-2016 ZIP Code Business Patterns in Texas, US. This study first carries out a centrographic7
analysis to reveal spatial movements of warehousing and distribution centers (W&DCs) and e-8
commerce establishments during the study period. Then the global and local bivariate Moran’s I9
for e-commerce and warehousing activities are calculated and spatially visualized. From the10
perspective of policy and practices, the revealed results are informative for identifying where e-11
commerce activity was underserved or oversupplied by warehouses. Finally, this study applies12
machine learning approach to explore the relative importance and threshold effects of e-13
commerce establishments and other key factors on the number of W&DCs.14

In general, the research results showed that the use of the proposed framework can15
effectively provide useful insights to local policy makers, logistics service providers, and other16
practitioners. The visualization of descriptive and explanatory spatial statistics makes the17
interpretation of how e-commerce and warehousing activities occur more straightforward and18
comprehensive. The case study also shows the ability of the framework to be conducted at any19
scale and location to identify relationships between e-commerce and distribution facilities.20
Below we summarize other important findings and their relevant implications, as well as the21
possible directions for future research.22

The impacts of logistics sprawl have been studied scientifically over the past decade. This23
study does not find solid evidence that warehouses are sprawling significantly in major24
metropolitan areas in Texas. Large metropolitan areas suffer from logistics sprawl as they25
usually act as hubs for export and import operations as well as massive consumer markets. In26
order to serve local, regional, and national economies, logistics facilities should be located near27
regional infrastructure networks. Logistics sprawl can be partially a result of the differences in28
land prices between suburban–exurban and central urban areas. Moving away from the built-up29
urban areas is due to land availability and low costs, interconnections with regional and national30
flows from suburbs, and local policies and governmental interventions. All these factors also31
explain why the phenomenon of logistics sprawl does not occur in study regions. One earlier32
study argued that freight activities are more heavily concentrated in central counties in major33
metropolitan areas in Texas than other US metropolitan areas (Cidell, 2010). Future research34
could use qualitative research methods to reveal the effects of institutional factors, such as35
municipal policies, environmental regulations, and financial incentives. As we all know, local36
government agencies play crucial roles in planning practices and allocating logistics facilities to37
meet their needs.38

Spatial cluster maps between warehouse and e-commerce activities are helpful and39
informative for planners and policy makers who are interested in reorganizing the spatial40
distribution of warehouses and other logistics facilities to fulfill customers’ needs related to the41
dynamics of e-commerce supply chains. As e-commerce fulfillment demands spike, warehouse42
managers and logistics providers need to examine their operational activities for faster, more43
accurate, and more productive results. Those spatial clusters with more e-commerce44
establishments but fewer W&DCs also warrant further study on their socioeconomic45
characteristics, network accessibility, transportation and industrial activities, as well as46
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warehouse space utilization. We do observe that the number of spatial clusters that are worthy of1
further investigation has been declining in Houston and Dallas–Fort Worth during the study2
period. There is one major problem with the spatial bivariate analysis presented, namely that it3
fails to capture the true influence of a particular factor while controlling for other factors.4

All statistical tests suggest a much weaker relationship between e-commerce and5
distribution facilities in Houston than in Dallas–Fort Worth and Austin. The results may be due6
to the fact that Houston's warehouse activities are heavily reliant on maritime cargo7
transportation. Internationally, the Port of Houston is connected to many ocean carriers that8
provide services on all major trade lanes and container shipping routes. With over two-thirds of9
U.S. gulf coast container traffic handled there, it is the largest gulf coast container port (Greater10
Houston Partnership, 2021). Accordingly, future studies could conduct multivariate analyses for11
e-commerce and distribution facilities based on their facility types or employment sizes, pending12
on the data availability. We also find that changes in e-commerce and manufacturing are more13
likely to lead to changes in warehousing location choice in the Dallas–Fort Worth regions than in14
Austin and Houston. Workers of color tend to play a greater role in Austin's warehousing15
industry. Data-driven machine learning approaches provide nuanced guidance on specific16
planning efforts because they rank the relative importance of explanatory variables and show17
nonlinear effects; however, these mechanisms need to be explored in greater depth.18

This study focuses e-commerce and warehousing activities in Texas between 2003 and19
2016, with a particular focus on three large MSAs, in terms of Dallas–Fort Worth, Austin, and20
Houston. The research results confirm that, along with e-commerce facilities, transportation21
activities, transport network accessibility, second-order industrial activities, and other social-22
economic conditions influence warehousing activities significantly. This study shows that the23
economic crisis of 2007-2009 influenced warehousing and logistics industry in Texas24
substantially. Local and regional agencies in Texas play a role in supply chains and logistics25
development through zoning, tax policies, and industry and workplace standards. Planning and26
policy makers can use the research results to better understand how logistics and e-commerce27
travel patterns are associated with urban spatial structure and function. This study also provides28
useful information to local logistics service providers on determining the appropriate locations of29
new warehouses and shipping facilities considering transportation planning practices, in30
collaboration with city and state planning departments. This is particularly important during the31
post pandemic era as there is much uncertainty about the potential COVID-19 long-term effects.32
Last but not the least, despite some above indicated limitations, this research proposes a novel33
framework and uses this framework in the Texas context, which offers important references for34
warehouse location analysis in the e-commerce era elsewhere.35
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Appendix A

(a) Number and location of W&DCs and e-commerce establishments in Dallas–Fort Worth
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(b) Number and location of W&DCs and e-commerce establishments in Austin
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(c) Number and location of W&DCs and e-commerce establishments in Houston

Figure A1. Number and location of W&DCs and e-commerce establishments in three MSAs
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Table A1. OLS Regressions
All Dallas Austin Houston Not in three MSA

Coeff. VIF Coeff. VIF Coeff. VIF Coeff. VIF Coeff. VIF
E-Commerce Facilities

Number of e-commerce establishments 0.238*** 1.50 0.293** 1.70 0.143*** 1.79 0.153*** 1.65 0.174** 1.31

Transportation Activities
Number of air transport establishments 0.061 1.07 0.076 1.10 0.014 1.21 0.065 1.10 0.477* 1.17
Number of water transport establishments 0.448** 1.16 2.107* 1.09 -0.477** 1.03 0.295* 1.19 0.872 1.04

Access to Transportation Infrastructure
Distance to highway -0.074*** 1.37 -0.029 1.50 -0.005 1.47 -0.121*** 1.52 -0.005 1.34
Distance to seaport 0.003*** 1.32 0.000 1.22 0.005 3.60 -0.009 2.22 0.000 1.20
Distance to airport 0.003 1.38 -0.058 1.37 -0.021 1.48 0.086** 1.59 0.010 1.32
Distance to intermodal facility -0.010*** 1.39 -0.017 3.54 -0.006 2.93 -0.028* 3.79 -0.002* 1.60

Industrial Activities
Manufacturing intensity 0.191*** 1.66 0.187*** 1.89 0.265* 4.03 0.158** 1.90 0.175** 2.32
Retail trade intensity -0.024*** 2.67 -0.033** 2.95 -0.059* 6.48 -0.016* 2.72 -0.016* 2.51

Population Density -0.232*** 2.94 -0.286*** 3.15 0.091 5.06 -0.293*** 3.58 -0.009 2.34
Median Household Income (in $1000) -0.007* 2.70 -0.007 3.06 -0.010** 3.45 -0.004 2.96 -0.006* 1.85
Race (base case: % of population is white)

% of population is Black 0.780 1.46 0.100 1.95 -1.118 2.08 0.545 1.49 1.159*** 1.31
% of population is Asian 3.246* 1.81 3.029 1.80 1.893 2.38 3.245 2.07 -3.089 1.37
% of population is other races -0.777 1.62 -3.138 1.69 0.769 3.27 3.142 1.65 -0.260 1.21

Ethnicity (base case: % of population is non-Hispanic)
% of population is Hispanic 3.468*** 2.93 5.150*** 3.32 1.078 5.18 2.310** 3.09 1.235** 1.97

Housing occupancy status (base case: % of occupied housing units)
% of vacant housing units 1.134 1.80 0.496 2.14 -0.608 2.37 1.664 2.08 -1.081** 1.46

Internet subscriptions in household (base case: % of households do not have internet access)
% of households have internet
subscription 0.698 2.80 -0.105 3.40 -0.076 4.47 0.474 2.92 1.422* 2.03

% of households have internet access
without a subscription -0.129 1.27 -1.538 1.39 -1.508 1.85 -1.306 1.22 4.745* 1.22

Year
2004 0.101*** 0.086* 0.061 0.115** 0.021*
2005 0.089*** 0.078 0.069 0.081 0.028
2006 0.136*** 0.130* 0.117* 0.122** 0.058***
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2007 0.168*** 0.147* 0.189** 0.159* 0.073***
2008 0.075 0.075 0.020 0.112 0.100***
2009 0.071 0.063 0.002 0.124 0.115***
2010 0.094 0.068 -0.039 0.215** 0.108***
2011 0.011 -0.063 -0.075 0.150 0.133***
2012 -0.025 -0.085 -0.201* 0.176 0.098***
2013 0.027 -0.037 -0.127 0.228** 0.131***
2014 0.012 -0.051 -0.123 0.203* 0.123***
2015 0.036 -0.019 -0.108 0.242* 0.146***
2016 0.037 -0.022 -0.168 0.292** 0.162***

Constant -0.734 1.135 0.691 -0.531 -0.959
R-squared 0.265 0.337 0.293 0.243 0.166
Number of obs. 8,554 4,004 1,316 3,234 13,986
Note: ***p value < 0.01, **p value < 0.05, *p value < 0. 1.
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