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Exploring spatial heterogeneity in the impact of built environment on taxi1

ridership using multiscale geographically weighted regression2

1. Introduction3

There is much evidence that the built environment has a significant and substantial4

impact on travel outcomes (Cervero 2002; Ewing and Cervero 2010; Ewing et al.5

2015; Zhu 2012, 2013; Zhu and Mason 2014; Zhu et al. 2020, 2022a). As an6

imperative component of urban transportation, taxi is providing all-day and flexible7

service that can complement public transit system and reduce private vehicle usage.8

According to the National Bureau of Statistics1, there are over one million taxis in9

China nationally. Especially in megacities like Beijing, they are an effective solution10

to the first-mile and last-mile problems (Rayle et al., 2014; Zhu et al., 2023).11

Understanding the factors that affect passenger demand and taxi supply during12

morning and evening peaks is crucial for improving the for-hire taxi industry’s service13

quality (Schaller, 2005). Discovering spatial patterns of taxi trips is also beneficial to14

mitigating traffic congestion and greenhouse gas (GHG) emissions (Çetin and Yasin15

Eryigit 2011). This study aims to comprehensively analyze the associations between16

built environment factors and taxi passengers’ travel behavior.17

Some recent studies have considered the spatially heterogeneous effects of18

built environment variables in travel behavior analysis (eg., Blainey 2010; Blainey19

and Preston 2013; Feuillet et al. 2015; Qian and Ukkusuri 2015; Tu et al. 2018; Wang20

1 https://data.stats.gov.cn/easyquery.htm?cn=C01andzb=A0B07andsj=2015
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and Noland 2021). An improved understanding of the associations between travel1

behaviors and the built environment is crucial for decision makers to make informed2

land use policies, and consequently influence broad sustainability objectives, such as3

reducing traffic congestion, energy consumption, and greenhouse gas (GHG)4

emissions. To better capture the spatially non-stationary process and obtain more5

accurate estimates, local models such as geographically weighted regression (GWR)6

have been introduced in transportation and urban management studies (Qian and7

Ukkusuri 2015; Wang and Chen 2017; Wang and Noland 2021; Yu and Peng 2019;8

Yu et al. 2018). However, one major assumption of GWR is that all of the9

associations between outcome variables and explanatory variables vary at a single10

spatial scale using the same bandwidth, which may not accurately characterize spatial11

contexts. The Multiscale Geographically Weighted Regression (MGWR) model12

allows multiple spatial scales to be expressed simultaneously, thus outperforming13

GWR. The main contribution of this paper is to employ this novel modelling approach14

to examine the spatially heterogeneous impacts of built environment characteristics on15

taxi ridership. This can provide better empirical evidence for taxi passengers’ travel16

patterns in different spatial contexts as compared to the traditional GWR model. We17

visualize the local estimates, to illustrate the heterogeneity of determinants for taxi18

ridership’s spatiotemporal distribution. The results not only expand the literature on19

the spatially non-stationarity associations between local built environment factors and20

taxi ridership distribution but also provide valuable insight into the development of21

transportation policies at a finer scale.22
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This study begins by presenting the spatial distributions of taxi ridership in1

two peak periods through GIS techniques. It then applies MGWR to reveal the spatial2

heterogeneity for the impacts of different built environment variables on taxi trips.3

The MGWR model is found to be a powerful tool that can provide a more accurate4

estimation result and nuanced analysis of the spatial variation in the impacts of5

different built environment characteristics on taxi ridership. This model achieves6

better goodness of fit and has more explanatory power. Based on the results,7

significant multiscale spatial heterogeneity is observed in the associations between8

spatial contexts and taxi trip pick-ups/drop-offs. We find that residential density is9

positively associated with taxi demand in areas with less public transport coverage10

than surrounding units. Moreover, improving bus coverage in areas with low coverage11

may attract more commuters to choose taxi plus bus mode for commuting instead of12

purchasing private vehicles. The results also indicate that the positive effects of road13

density on taxi ridership are spatially heterogeneous. Policymakers can benefit from14

the more accurate and detailed understanding of the spatial determinants of taxi15

ridership provided by our work. This may help to allocate available taxi resources16

within the urban intermodal transportation system, reducing traffic stress in the city17

center. In addition, since ride-hailing services like Uber and Didi have grown in18

popularity, our results could potentially be a valuable reference for integrating these19

novel mobility services into the traditional transport system effectively and efficiently.20
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2. Literature review1

2.1 Factors that influence ridership patterns2

There are a wide range of studies concerning the factors that may influence travel3

ridership. Apart from internal factors like cost, duration, and quality of service4

(Kanafani, 1983), built environment factors such as population density, development5

level, and public transport access have been shown to substantially affect travel6

behaviors. These built environment factors are often summarized as the 5D -- Density,7

Design, Diversity, Distance to transit and Destination accessibility (Ewing and8

Cervero 2010). This theory guides our study’s independent variable selection. Based9

on the 5D principle and existing research (i.e., Currans and Muhs 2015; Qian and10

Ukkusuri 2015; Wang and Noland 2021; Yang et al. 2018; Yuan, Raubal and Liu11

2012;), a set of standard variables are adopted in this study. For density, this paper12

includes residential density and employment density at the 1km*1km grid level. For13

design, the model includes the road area ratio for each grid, which measures the road14

coverage. For distance to transit, this study uses bus coverage and the subway15

coverage to measure public transport service level. For diversity, average housing16

price per m2 and construction density (the number of buildings for each grid) are17

adopted.18

Furthermore, for destination accessibility, the model includes the number of19

different categories of POIs (points of interest) to take account of the effects of20

different trip purposes. In particular, the existing literature has shown that transfer21
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activities between transportation hubs have significant impacts on the travel demand1

for ridehailing or for-hire taxi passengers (Wang and Noland, 2021). In addition,2

housing prices and income have also been considered in a wide range of relevant3

studies as indicators of socioeconomic status (see Qian and Ukkusuri 2015; Wang and4

Cao 2017; Wang and Noland 2021; Yang et al. 2018; Yu and Peng 2019;).5

Alongside a large body of work focusing on buses, subways and private cars6

(see Kain and Liu 1999; Kuby, Barranda and Upchurch 2004; Haire and Machemehl7

2007; Tao et al. 2014; Chakour and Eluru 2016), ridehailing services like Uber and8

Didi have also received a tremendous amount of attention (Yu and Peng 2019; Zhang9

et al. 2020; Wang and Noland 2021). For example, Alemi et al. (2018) used online10

survey data in California to explore the factors affecting on-demand ride services like11

Uber and Lyft using binary logit models. They found that age, education level,12

lifestyle, land use mix and auto accessibility significantly affect the probability of13

using on-demand ride services. Tu et al. (2021) utilized machine learning methods14

with Didi ridesourcing requests and GPS data from Chengdu to examine the nonlinear15

effects of built environment factors on ride pooling. They argued that these built16

environment factors had substantial nonlinear impacts on the likelihood of ride17

pooling. Based on the same dataset, Zhang et al. (2020) used ordered logistic18

regression to investigate the correlation between the intensity of ridehailing services19

and POIs. Their results indicated that regions with high travel intensity showed spatial20

agglomeration patterns, and different amenities had different impacts on travel21

intensity. Nevertheless, the number of studies empirically examining the association22

https://www.sciencedirect.com/topics/social-sciences/uber
https://www.sciencedirect.com/topics/earth-and-planetary-sciences/global-positioning-system
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between for-hire taxi ridership and various built environment characteristics is still1

limited compared to that for other transportation modes. Different travel modes may2

respond to the built environment differently. Drawing lessons from the classic 5D3

framework, this study investigates the spatial relationships between built environment4

context and taxi demand.5

2.2 Spatial heterogeneity of built environment effects in travel behavior6

studies7

Previous studies have examined the spatial heterogeneity of built environment effects8

on travel behavior and have demonstrated the importance of accounting for spatial9

non-stationarity in the relationship between local contexts and travel behaviors (eg.,10

Blainey 2010; Blainey and Preston 2013; Feuillet et al. 2015; Li et al. 2021; Paez et al.11

2007; Qian and Ukkusuri 2015; Tu et al. 2018; Xu et al. 2021; Wang and Noland12

2021). For instance, Paez et al. (2007) adopted mixed ordered Probit models to13

investigate spatial and demographic variability in travel behavior of the elderly based14

on the travel survey data collected in the Hamilton Metropolitan Area, Canada. They15

pointed out that the determinants of trip-making propensity were not spatially16

homogeneous, and spatial models (mixed ordered Probit model) performed better than17

conventional non-spatial models (ordered Probit model). To predict the trip volume of18

local rail, Blainey (2010) compared multiple linear regression and GWR models and19

pointed out that the latter had a better fit and spatial parameter variation existed.20

Employing the geographically weighted Poisson regression (GWPR) model, Feuillet21
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et al. (2015) investigated how residential environment characteristics influence1

commuting behavior. Their results indicate that the magnitude and statistical2

significance level of different neighborhood environment factors vary by location.3

Based on NYC taxi GPS data, Qian and Ukkusuri (2015) found that taxi demand was4

location-sensitive, meaning that the relationship between taxi ridership and its5

determinants, including socio-demographic and built environment characteristics,6

were not stationary across urban spaces. Liu et al. (2020), Tu et al. (2018), and Wang7

and Noland (2021) similarly argued that it is necessary to account for spatial8

heterogeneity when analyzing the influence of the built environment on travel9

behavior.10

Conventional global models, such as the ordinary least squares (OLS) model11

and Probit model, assume that all the relationships between outcome variable and12

explanatory variables are stationary across spaces (Brunsdon, Fotheringham and13

Charlton 1996). This assumption does not hold in many real cases. Several empirical14

studies focusing on factors influencing travel behavior have applied local models to15

calibrate the spatially non-stationary process. Specifically, the GWR model is one of16

the typical alternative local models which is able to capture the spatial non-17

stationarity in the spatial process (Brunsdon, Fotheringham and Charlton 1996). It18

allows local regression coefficients for each independent variable to vary at different19

locations; this has been used to examine the spatial patterns and determinants of20

ridership in a few recent studies (Qian and Ukkusuri 2015, Wang and Noland 2021;21

Yu and Peng 2019). For example, Yu and Peng (2019) used the GWPR model to22
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explore the spatial relationships between spatial contexts and ridesourcing demand in1

Austin and found significant spatial heterogeneity in the effects of socioeconomic and2

built environment characteristics. Wang and Noland (2021) came to similar3

conclusions using data on Didi Chuxing trips in Chengdu to analyze the association4

between the built environment and online ride-hailing ridership using the GWR model.5

The GWR or GWPR models usually achieve better goodness of fit than the6

traditional global model (Fotheringham, Brunsdon and Charlton 2003); however, they7

both regard the spatial scale constant among all spatial processes. Considering the8

existence of multiscale spatial effects of different built environment variables on the9

distribution of taxi ridership, this study adopts the MGWR, a multiscale extension of10

the GWR model, to investigate the spatial variation in the associations between11

associations different built environment characters and taxi ridership. Compared with12

GWR, MGWR has the advantage of accurately capturing realistic spatial13

heterogeneity. This avoids misleading conclusions resulting from ignoring the scale14

variations for different spatial processes, and further helps to make more effective15

decisions for local governments. Meanwhile, it can reduce collinearity in the fitting16

process and diminish parameter estimation bias (Oshan, et al. 2019). A table17

summarizing the literature is provided in Appendix 1. It can be seen both spatial18

autocorrelation and spatial heterogeneity have been increasingly noticed in recent19

years. On the one hand, many studies adopt spatial econometric models to capture the20

spillover effects embedded in built environment effects or travel demands, namely,21

spatial autocorrelation. On the other hand, for spatial heterogeneity, most studies use22
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GWR, Geographically Weighted Poisson Regression (GWPR) and Semi-parametric1

Geographically Weighted Poisson Regression (SGWPR), and some studies use other2

methods like simultaneous equation modeling. However, none of these studies3

address the varying range of spatial processes for different independent variables. To4

the best of our knowledge, this paper is the first attempt to apply MGWR to examine5

the associations between spatial contexts and taxi ridership. Based on the existing6

theories, this study provides a new methodology for in-depth analysis of travel7

behavior.8

9

3. Data and methodology10

3.1 Study area and variables11

The study area was defined as the central urban area of Beijing, within the 5th Ring12

Road (see Figure 1), because the mobile signalling data and housing price data used in13

this paper are only available for the central area. The study area covers most of the14

areas of central Beijing, including the entire Dongcheng and Xicheng municipal15

districts and parts of the Haidian, Shijingshan, Chaoyang, Daxing and Fengtai16

municipal districts. Beijing's public management departments and social organizations17

are mostly distributed in central areas within the 4th Ring Road. Three traditional18

commercial districts (Qianmen, Xidan, Wangfujing) are all located inside the 2nd19

Ring Road, while many new comprehensive commercial areas such as Madian,20

Chaowai Street, Wudaokou and Wangjing are located between the 2nd and 4th Ring21
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Road in the north. In addition, more than half of the office buildings are situated in1

Chaoyang District and Haidian District, while lots of manufacturing is located outside2

the southern 4th Ring Road (Tian, Wu and Yang 2010). The chosen study area thus3

encompasses the core of urban life in Beijing. To address the modifiable areal unit4

problem (MAUP) (Openshaw and Taylor 1981), we divide this study area into 6835

rectangular zones (1km × 1km) instead of using administrative units directly. This6

grid size is commonly used in research on Chinese metropolises such as Beijing and7

Shanghai (Liu et al. 2015; Kong et al. 2017; Gong et al. 2016; Zhu et al. 2022b).8

The 5th Ring

The 4th Ring
The 3rd Ring

The 2nd Ring

Sources: Esri, HERE, Garmin, USGS, Intermap, INCREMENT P, NRCan, Esri Japan, METI, Esri China (Hong
Kong), Esri Korea, Esri (Thailand), NGCC, (c) OpenStreetMap contributors, and the GIS User Community

±

Research area

9

Figure 1 Research area10

The dependent variables in this study are the number of taxi2 pick-ups/drop-11

offs for each grid in the morning/evening peak time. The taxi trajectory data we used12

2 Note that the taxi in this paper specifically refers to traditional taxis that do not include Transportation Network
Company (TNC) services.
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are generated by about 18,000 taxis from several anonymous taxi companies from1

April 1st to 26th 2015, comprehensively reflecting the spatial characteristics of taxi2

passengers’ travel behavior in Beijing. Given that the urban transportation system3

faces many challenges during rush hours, it is necessary to investigate the4

determinants of taxi trips’ spatial distribution. Therefore, two time periods--morning5

peak hours (7 to 9 AM) and evening peak hours 5 to 7 PM) on weekdays are selected.6

We calculated the average hourly taxi trip pick-ups/drop-offs in two peak periods for7

each grid, respectively.8

The independent variables are selected according to the 5D principle (Ewing9

and Cervero 2010). Specifically, we select the following built environment and10

socioeconomic variables as factors potentially influencing taxi ridership: residential /11

employment density, average housing price per m2, bus coverage (share of 200m bus12

coverage in a grid), subway coverage (share of 400m subway coverage in a grid), road13

coverage (road area ratio for each grid), the number of buildings for each grid, the14

amount of floors in buildings for each grid, and the amount of certain types of POIs15

(Figure 2). All independent variables were collected in the same period as the16

dependent variable.17



Figure 2 Research framework for major impact factors of taxi passengers’ travel behavior



13

Since official fine-grained employment and residential density are unavailable1

in Beijing, we calculated these variables based on mobile signaling data. Mobile2

signaling data has been widely used to estimate the number of employers and3

residents in a specific geographical range (Ding, Niu and Song 2016; Louail et al.4

2014). The mobile signalling data used in this research was collected from China5

Unicom, one of China’s mainstream mobile carriers, provided by Smart Steps Digital6

Technology company. The residential location and workplace of each user were7

identified according to duration and frequency during weekdays, and then the number8

of employees and residents were aggregated by each unit.9

This study uses the sum of road area per grid cell as the measure of road area10

density. The road network data is collected from OpenStreetMap11

(https://www.openstreetmap.org/). We calculated the road area of each grid by12

multiplying road length, lane numbers and lane width. Since each grid has a total area13

of 1km2 , the road area of a grid is numerically equivalent to the road area ratio. Public14

transit availability must also be considered in travel behavior analysis. Though15

subway and bus are both major public transport modes, there are some differences16

regarding capacities, distribution and service ranges. We specify the geolocation of17

bus stops and subway stations and generate a 200-meter buffer for each bus stop and a18

400-meter buffer for each subway station. The radius definition is drawn from19

previous studies on acceptable transfer between transport modes (Ishaque and Noland20

2008; Wang and Noland 2021). To generate the variables used in the model, we21
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calculated the ratio of the land area within a 200-meter of bus stops or a 400-meter1

service radius of subway stations to the total land area (1km2) in each grid.2

This study introduces the building density and the average amount of stories3

for each cell as independent variables to measure the land development intensity. The4

original geospatial data of buildings were collected from AMap3. We also include the5

counts of four types of POIs in each grid, which were scraped from Baidu Map4.6

Since no official micro-level socioeconomic data on actual personal income or7

family financial conditions is available, this paper uses housing prices to measure8

household income, as practiced in previous studies (Zhang, Jia and Yang 2016). We9

collected housing prices in 2015 from Lianjia (https://bj.lianjia.com), a popular real10

estate transaction platform in China. We computed the average housing price of all11

housing units for each grid. In addition, for some cells (around 26%) that lack housing12

prices, this study follows previous studies in adopting spatial interpolation methods to13

estimate the missing data (e.g., Chica-Olmo 2007; Hu et al. 2016; Martínez, Lorenzo14

and Rubio 2000; Zhang, Tan and Tang 2015). Specifically, we employ the empirical15

Bayesian Kriging approach for spatial interpolation (Omre 1987; Krivoruchko 2012),16

which has proven to be capable of achieving better global prediction with limited17

sample data (Montero-Lorenzo, Larraz-Iribas and Páez 2009). The spatial18

interpolation was implemented in ArcGIS Desktop 10.7, following the official Help19

documentation. We implied K-Bessel as the semivariogram model, which performs20

best in cross-validation.21

3 http://lbs.amap.com/
4 http://map.baidu.com

https://bj.lianjia.com/
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3.2 MGWR model1

As mentioned in section 1, GWR is a local regression model that can capture the2

spatial heterogeneity embedded in the spatial process by allowing parameter estimates3

for each research unit. A critical concept in GWR is the bandwidth, representing the4

spatial scale for each local regression equation. One shortcoming of GWR is that it5

assumes that the bandwidth for each independent variable is constant (Fotheringham,6

Yang and Kang 2017). However, it is more likely that different built environment,7

socioeconomic and demographic variables may have different spatial scales. That is to8

say, the constant bandwidth for each independent variable in GWR possibly leads to9

misspecification of scale for some variables (Oshan et al. 2019) and unnecessary10

noise (Gu et al. 2021).11

MGWR is the multiscale extension of GWR that allows different optimal bandwidths12

for different independent variables in the model. That enables multiscale modeling,13

which provides a more accurate and robust stimulation for actual spatial processes14

(Fotheringham, Yang and Kang 2017; Yu et al. 2018). This can be expressed as15

follows (Equation 1).16

�� = ���0 ��, �� + � ����� ��, �� ��� + �� (1)17

Where ���0 ��, �� represents the intercept for observation i at the location18

��, �� ; ��� represents the kth independent variable; ���� indicates the kth coefficient,19

and ��� is the bandwidth of its kernel function; and �� is the error term. The criterion20

for selecting the optimal bandwidths is the corrected Akaike information criteria21
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(AICc). Following Fotheringham, Yang and Kang (2017), the optimal bandwidth in1

this study is calculated by a bi-square kernel with a back fitting algorithm for2

calibration. Its main idea is to assume that all other parameters are known except the3

parameter that is to be calibrated currently. Proportional change in the residual sum of4

squares (RSS) convergence criterion is used as the convergence criterion (Equation 2).5

������ = ������−������
������

(2)6

Where the ������ is the score of change according to RSS; ������ represents the7

RSS in the calculation this time; ������ represents the RSS in the calculation last time.8

4. Results9

4.1 Model comparison10

As demonstrated in Table 1, the MGWR allows each independent variable to have11

different optimal bandwidths that depict the influencing scales for the spatial process12

(Lao and Gu 2020). Because both the morning pick-up model and the evening drop-13

off model consider the impacts of residential density on taxi trips, we align this pair14

together in Table 1, and so do the morning drop-off model and evening pick-up model,15

which both include the employment density. The influencing scales for residential16

density, commercial-and-recreational POI, and residence and related facilities17

encompass nearly the entire study area in all four models, indicating these variables18

have large influencing scales with global bandwidths during both peaks. In addition,19

bandwidth for the share of 200-meter bus coverage in the grid cell and average20
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housing prices is also 682 grid units (out of 683) in all models except the Morning1

drop-off model. Compared with these variables, the influencing scales of employment2

density, the road area ratio, and construction density are much smaller. The bandwidth3

of average housing price is small in the Morning drop-off model, suggesting that the4

spatial variation of its influences on morning taxi drop-offs is large. Moreover, the5

influence scale of the construction density is quite small except in the Morning drop-6

off model. As for different POIs, the bandwidth of public management and service7

POIs is small in the two evening peak models, indicating that there is significant8

spatial heterogeneity during the evening peak hours. In summary, the spatial scales of9

influence vary for different factors. Thus, GWR, which assumes that all variables10

have the same bandwidth, is biased, and MGWR should be adopted to capture the11

spatial variation in influence factors.12

13



18

Table 1 Bandwidth calculation results of MGWR1

Morning pick-
up model

Evening drop-
off model

Morning drop-
off model

Evening pick-
up model

Residential density (log) 680 682
Employment density (log) 152 54
Share of 200-meter bus
coverage in the grid cell

682 682 307 682

Share of 400-meter subway
coverage in the grid cell

682 669 665 424

Road area ratio for each grid 258 287 680 133
Average housing price (log) 682 682 179 682
# of buildings for each grid
(log)

223 70 682 215

# of stories in buildings for
each grid (log)

680 152 664 682

# of commercial-and-
recreational POI (log)

682 682 682 682

# of manufacturing-and-
office POI (log)

531 682 287 682

# of residence-and-related-
facility POI (log)

682 682 682 682

# of public-management-
and-service POI (log)

682 49 682 56

Intercept 48 70 48 149

Note: (1): # represents the number of this variable; (2):The number in the table denotes how2

many nearest neighbors that contribute to the regression results for one unit.3

Table 2 shows regression results of the MGWR and OLS models. The median,4

maximum, minimum, and standard deviation values of each independent variable’s5

local coefficient estimate in MGWR are represented. This study's explanatory6

variables have passed the multicollinearity test (shown in Appendix 2) (Montgomery7

et al., 2012). The chosen bandwidths of the MGWR are adaptive, and the bi-square8

kernel function is adopted.9
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Table 2 Regression results of OLS and MGWRModel1

Morning Pick-up Morning Drop-off Evening Pick-up Evening Drop-off
MGWR OLS MGWR OLS MGWR OLS MGWR OLS

Median St.
Dev.

Coef. Median St.
Dev.

Coef. Median St.
Dev.

Coef. Median St.
Dev.

Coef.

Residential density (log) 0.107 0.010 0.109*** 0.120 0.002 0.118***
Employment density (log) 0.385 0.095 0.248*** 0.592 0.494 0.078**
Share of 200-meter bus coverage in the grid cell 0.160 0.031 0.186*** 0.093 0.033 0.132*** 0.11 0.004 0.086** 0.122 0.005 0.139***
Share of 400-meter subway coverage in the grid
cell 0.017 0.003 0.017 0.040 0.004 0.050*** 0.068 0.028 0.108*** 0.040 0.005 0.022

Road area ratio for each grid 0.131 0.049 0.175*** 0.147 0.011 0.173*** -0.044 0.251 0.165*** 0.122 0.038 0.145***
Average housing price (log) 0.017 0.002 0.072*** 0.024 0.008 0.094*** -0.007 0.009 0.065** 0.044 0.003 0.102***
# of buildings for each grid (log) -0.010 0.039 0.014 -0.018 0.059 0.014 -0.255 0.03 -0.015 -0.014 0.069 -0.006
# of stories in buildings for each grid (log) 0.169 0.006 0.228*** 0.076 0.004 0.161*** 0.026 0.038 0.181*** 0.112 0.052 0.182***
# of commercial-and-recreational POI (log) 0.077 0.007 0.088*** -0.044 0.004 -0.048 0.116 0.142 0.106** 0.220 0.002 0.207***
# of manufacturing-and-office POI (log) 0.052 0.010 0.076*** 0.047 0.057 0.143*** 0.119 0.142 0.376*** 0.082 0.003 0.111***
# of residence-and-related-facility POI (log) 0.090 0.006 0.038 0.021 0.005 0.007 -0.149 -

0.135 -0.118 0.062 0.004 0.048**

# of public-management-and-service POI (log) 0.192 0.008 0.189*** 0.190 0.006 0.203*** -0.252 0.398 0.025 0.106 0.077 0.136***
Intercept 0.036 0.197 0 0.024 0.233 0 -0.337 0.115 0 0.081 0.183 0
AICc 306.789 500.897 376.642 574.246 687.383 1130.450 102.794 334.243
R2 0.926 0.883 0.920 0.869 0.882 0.705 0.948 0.908
Adj. R2 0.918 0.881 0.910 0.867 0.864 0.700 0.940 0.907
Moran’s I in residual Contiguity matrix 0.011 0.224*** 0.076* 0.276*** 0.024 0.328*** 0.003 0.248***

Inverse-distance matrix 0.005 0.281*** 0.074* 0.285*** 0.030 0.322*** 0.001 0.244***

Note: (1). * p-value < 0.05; ** p-value <0.01; *** p-value <0.001; (2) Dependent variables for four models are number of morning-peak pick-ups (log),2

number of morning-peak drop-offs (log), number of evening-peak pick-ups (log) and number of evening-peak drop-offs (log), respectively.3
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Table 2 demonstrates that MGWR has a lower AICc value and a higher R2 and1

adjusted R2 than OLS, indicating relatively better goodness of fit (Charlton et al.,2

2009). In addition, we calculated the global Moran’s I value of the residuals of each3

model to test whether spatial autocorrelation in the residuals exists. The results are4

also reported in Table 2. The residuals of the OLS model show a strong spatial5

autocorrelation (Moran's I value is significant and positive) regardless of whether the6

contiguity matrix or inverse-distance matrix is used, whereas no significant spatial7

autocorrelation is observed among residuals of the MGWR model. According to8

Finley (2011) and Gu et al. (2019), the spatially autocorrelated residuals may indicate9

inaccurate estimates of model parameters. These results further indicate that MGWR10

helps to ensure statistical validity and increase prediction precision through locally11

fitting the spatial variation of residuals from each spatial process. Therefore, the local12

MGWR model is preferred to the global OLS model in estimating the relationships13

between different built environment factors and taxi trips at different locations.14

In addition, we further implement GWR for four models and compare the15

results to MGWR. The GWR results are shown in Appendix 1. The universal16

bandwidth for each of the four models (i.e., morning pick-up, morning drop-off,17

evening pick-up, and evening drop-off) is 206, 150, 150 and 166, respectively.18

Because Table 1 has clearly indicated that the bandwidths of most explanatory19

variables are different from each other and should be treated as such in analysis, we20

infer that adopting a universal bandwidth will be oversimplistic and lead to biased21

estimates. Furthermore, the differences in corrected Akaike information criterion22
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(AICc) and R2 across OLS, GWR and MGWR models suggest that MGWR achieves1

the best model goodness of fit.2

Before we proceed to discuss the MGWR model results in detail in section 4.2,3

we first briefly present the results of the OLS models, because they can provide4

intuitive interpretations on which explanatory variables are statistically significant5

(although their coefficient sizes are less relevant as MGWR models will provide a6

local coefficient estimate for each geographic unit). The OLS models report the global7

effects of the explanatory variables, indicating that six independent variables are8

significantly associated with taxi ridership in all four models, including the residential9

or employment densities, bus coverage, road network density, average housing price,10

the average amount of stories and manufacturing and office facilities. Commercial11

and recreational facilities shows no significant relationship with taxi drop-offs in the12

morning peak. That may be because most travel during this period is for commuting13

purposes. Likewise, residence and related facilities are only positively associated with14

evening-peak drop-offs. Parameter estimates for the public-management-and-service15

POI is statistically significant and positive, except in the Evening pick-up model,16

possibly because most government departments and agencies close before the evening17

peaks we defined (5:00-7:00 PM). Subway coverage is statistically significant only in18

the Morning taxi drop-off and Evening pick-up model, as people often use taxi to get19

from home to subway stations in the morning peak and inversely in the evening peak.20

Meanwhile, bus coverage has a substantially positive impact on taxi trip pick-ups and21

drop-offs in all four models. In other words, the importance of taxis as a solution to22
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first-mile or last-mile problems for bus passengers is higher than that for subway1

passengers.2

3

4.2 Empirical results4

4.2.1 Spatial pattern of taxi trips5

Figure 3 displays the spatial distribution of pick-ups and drop-offs of taxi ridership6

during two peak periods based on the natural breaks (Jenks) classification method.7

8

Figure 3 Spatial pattern of taxi trip volumes in grids9

The amount of taxi trip pick-ups/drop-offs in each grid can also be interpreted10

as the density of pick-ups/drop-offs as each grid area is equal to 1km2. In the morning,11

the density of taxi trip pick-ups is generally lower than that of drop-offs, whereas the12
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latter is less concentrated. In the evening peak hours, however, the density of taxi trip1

pick-ups is roughly equal to that of drop-offs. In addition, taxi drop-off density is2

relatively low during the evening rush hour compared to morning.3

To further reveal the spatial clustering pattern of taxi trips, we also implement4

Hot Spot Analysis. This is a spatial statistic tool for identifying significant spatial5

clusters of high and low values, called hot and cold spots, respectively (Ord and Getis6

1995; Getis and Ord 2010). Figure 4 displays the mapping results of Hot Spot7

Analysis. The taxi pick-ups / drop offs during two peak periods show roughly similar8

results, which can be explained in two respects. First, some studies the average travel9

distance for taxi trips in Beijing is between 9km~20km (Jiang et al. 2018). That is,10

taxis are usually employed for short and medium-distance travel, which can explain11

the similarity of Hot Spot Analysis results of pick-ups and drop-offs during two12

periods. In addition, compared with auto-dependent Western cities with a comparable13

population and land use size, people in Beijing have relatively shorter commuting14

distances, which indicates a better job-housing balance within the Beijing15

Metropolitan Area (Zhou and Long 2014). Clusters of high-density taxi trips (hot16

spots) are concentrated in the northeast central urban area, between the 2nd Ring17

Road and the 4th Ring Road during both morning and evening peak hours.18

Moreover​ , most interchange stations like Wangjing station and the Olympic Park19

station are hot spots. The clusters of low-density taxi trips (cold spots) exist in two20

peaks, which means not only does the grid itself have low-density taxi trips, but the21
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taxi ridership in its neighboring grids is also low, primarily distributed at the edge of1

the research area.2

3

Figure 4 Hot Spot Analysis of taxi volumes in grids4

4.2.2 Spatial variations of the impact on taxi trips5

To reveal the spatial pattern of influence factors on taxi trips, we visualized the6

parameter estimates of explanatory variables using ArcGIS 10.7 software with the7

Jenks Natural Breaks5 classification method, and colors from blue to red show the8

variation of determinants. The spatial patterns of regression coefficients for each9

variables are illustrated in Figure 5, note that only significant variables will be10

discussed in detail subsequently.11

5 It is a classification method based on variance minimization criteria, which can maximize the variance among
different classes (De Smith, Goodchild, and Longley 2017). It has been widely used for local coefficient
visualization (eg., Gu et al. 2021; Sha et al. 2017 and Yang et al. 2019).
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1

Figure 5 Local coefficients of each factor2
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1
Figure 5 Local coefficients of each factor (continued)2

1) Residential and employment densities3

The spatial patterns of regression coefficients of residential or employment4

densities are different in the four models. As Figure 5 shows, it residential density5

has positive impacts on taxi demand during the morning peak in the entire research6

area, and the values of its coefficients decrease from north to southeast in the Morning7

pick-up model. For the Morning drop-off model (b), the coefficients vary significantly8

in space. Larger positive coefficients in the northeastern part of Beijing are observed.9
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Meanwhile, strong positive effects of employment density on taxi drop-offs during the1

morning peak hour occur in a small area west of the city center. In the evening, higher2

positive effects of employment density on taxi trip pick-ups can be observed in the3

north-eastern part, which accommodates Beijing’s Central Business District (CBD).4

One interesting thing is that the small area west of the city center observes higher5

coefficients again. Referring to the hotspot analysis of bus and subway coverage6

(Figure 6), we find that this is a blank area for both figures, meaning it has less access7

to public transport compared with neighboring areas. Given that taxis are a vital8

complement to public transit in China (Hall et al.,2018; Wang and Noland, 2010),9

people who work in the vicinity of this gap in bus and subway coverage may rely10

heavily on taxis to connect to other transportation modes. Thus, employment density11

shows a stronger effect on taxi trips there. For evening-peak drop-offs, the estimates12

vary slightly across space, implying that the residential density is more influential in13

the west of the city, with the impact decreasing from west to east.14

15

Figure 6 Hot Spot Analysis of bus/ subway coverage16

2) Public transportation17
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 Share of 200-meter bus coverage in the grid cell1

During the morning peak, we find that the local coefficients of the share of bus2

coverage area are positive and decrease slightly from center to periphery. That means3

an increase in bus coverage in areas around the city center with relatively low bus4

coverage may introduce more taxi trips. Increasing bus coverage in these places can5

encourage commuters to choose taxi plus bus mode for commuting--taking taxis to6

bus stops nearby and then taking buses to work. This could potentially contribute to7

reducing private vehicle usage, consequently relieving traffic stress and carbon8

emissions in the downtown area. In the Morning drop-off model, the spatial variation9

in the local parameter estimates for this variable is stronger, increasing from west to10

east. In the Evening pick-ups model, the highest local coefficient of bus coverage11

occurs in the northeast, which is related to the increased travel demand in this area.12

Bus coverage is still statistically significant for drop-offs and associated with more13

drop-offs during the evening peak hours, with the high coefficients concentrated in14

the southeast.15

 Share of 400-meter subway coverage in the grid cell16

According to the results, subway coverage shows a significantly positive17

association with taxi morning peak drop-offs and evening peak pick-ups. As shown in18

figure 5, the spatial pattern of its local estimated coefficients illustrates a pattern19

similar to the bus coverage pattern in the morning peak models. In the evening peak20

periods, an increase in subway coverage is likely to be associated with more taxi21
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ridership in the eastern part of the city, while this positive effect is relatively weaker1

in the west.2

3) Road network density3

According to the estimation results, local road density is positively associated4

with both pick-ups and drop-offs, decreasing from south to north in the morning peak5

hours. Figure 7 shows that the local road network density in Beijing increases from6

south to north. That is, the rise of road density in southern areas with fewer roads is7

positively associated with the amount of taxi trips, which may suggest the current8

density of roads is insufficient to meet travel demand. The evening pick-up model9

shows a different spatial pattern of coefficients for road density compared with the10

morning pick-up model. There is a high clustering of area during the evening peak11

with high positive cumulative estimates in the north. This difference may could be12

explained by different travel purposes. Research points out that areas with high road13

density attract more people living and working, so that generates more travel demand14

(Tang et al. 2019). The employment density in the northern part of our study area is15

much higher than the southern part, therefore the positive impact of road density is16

quite obvious in the north, while no significant effect of it can be found in the south.17

In the Evening drop-off model, road density still shows a positive impact in units with18

a large number of taxi drop-offs. The spatial distribution of its coefficient is consistent19

with that in the morning.20
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1

Figure 7 Spatial pattern of the road area ratio

4) Average housing price2

The estimates of average housing prices in the Morning pick-up model vary3

slightly across the research area. According to Table 1, this factor has positive4

impacts on taxi demand in general. Moreover, this influence weakens from southeast5

to northwest, perhaps because of the higher price sensitivity for low-income groups as6

taxis are relatively costly compared with other travel modes (the starting price of taxis,7

buses, and subways in 2016 being ￥13 yuan, ￥2 yuan, and ￥3 yuan respectively).8

For drop-offs during the morning peak, the spatial variation in its estimates is stronger.9

The positive coefficient in the northern area, which concentrates lots of upscale10

residential neighborhoods, is smaller than that in the southern part. The spatial11
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distributions for the coefficients of average housing price in the Evening pick-up and1

drop-off models are broadly similar, with the values decreasing from south to north.2

5) Land development intensity3

 Average number of stories of buildings4

During the morning peak, the average number of stories of buildings shows a5

positive effect on taxi trip pick-ups, increasing slightly from southwest to northeast.6

For drop-offs, its local coefficients rise from the city center to the surrounding area.7

Meanwhile, the eastern part has the highest coefficients, indicating that high-rise8

buildings such as office towers and apartment blocks in the central area with intensive9

development have fewer effects on taxi trips during the morning peak. In contrast,10

such effects are more decisive in less intensively developed areas. In the Evening11

pick-up model, an increase in high-rising buildings is correlated with more taxi12

demand in the east. Nevertheless, its highest positive coefficients appear in the13

northwest corner, and the coefficients for central downtown are lower and even14

negative in the Evening drop-off model. Specifically, the eastern part of our research15

area has a concentration of many tall office towers and condos (see figure 8), which is16

more likely to generate taxi trips for commuting in the morning than areas with lower17

buildings. As for the different results of the Evening drop-off model, this may be18

related to more diverse travel purposes after work (e.g., entertainment, dining and19

shopping).20

https://context.reverso.net/翻译/英语-中文/more+diverse
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Figure 8 Spatial pattern of the average number of stories of buildings for each grid

6) Different categories of amenities1

Our results show that taxi trips during the two peak periods are significantly2

associated with most categories of POI. The spatial patterns of various POIs’3

estimated coefficients are considerably different, giving us insights into the detailed4

association between different amenities and taxi trips in different areas within the city.5

For example, the manufacturing-and-office POI shows strong positive and significant6

coefficients in four models. The Morning pick-up model's local coefficients decline7

from west to east, similar to the Evening drop-off models. By comparison, the8

positive effects of manufacturing and office POIs exhibit an increasing trend from the9

northeast part to the southwest part, and the clusterings of areas with the lowest10

estimates cover the central area. The cause of this phenomenon may be related to the11
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unique political position of central Beijing: a large number of people who work there1

are government officers with less taxi dependence, while commuters in the northern2

area are usually medium or high-income groups, with a higher probability of taking3

taxis.4

5. Conclusions5

Although a large body of empirical studies has been conducted on the effects of the6

built environment on travel behavior (Ewing and Cervero 2010), little attention has7

been given to the spatial heterogeneity of these effects. Only a few studies have8

specifically investigated the spatially heterogeneous effects of the built environment9

on taxi ridership (Liu et al. 2020; Qian and Ukkusuri 2015; Wang and Noland 2021).10

However, they have ignored the varying scales for impacts of different factors on taxi11

trips. This study fills this gap and examines such heterogeneity using a full sample of12

taxi trips during morning and evening peak hours in April 2015. We adopt the13

MGWR local model to reveal detailed spatial variation in the determinants of taxi14

ridership. The results can help policymakers better understand the spatial patterns of15

taxi trips and their relationship with urban built environmental characteristics. This16

can help policymakers to develop more contextualized policies, and may be17

particularly valuable for allocating taxi reception zones and transportation planning.18

We first use Hot Spot Analysis to analyze the spatial- clustering pattern of taxi19

ridership. A spatially concentrated pattern of taxi ridership during two peak hours can20

be observed. Specifically, clusters of high-density taxi trips (hot spots) are21
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concentrated in Beijing's northeast central urban area, and clusters of low-density taxi1

trips (cold spots) are distributed at the edge. Then the global model suggests that the2

residential/employment density, bus coverage, local road network density, average3

housing price, high-rise buildings and the manufacturing-and-office POI positively4

affect taxi trip pick-ups and drop-offs during both peak periods. In addition, subway5

coverage only has a statistically significant coefficient estimate in the Morning drop-6

off model and the Evening pick-up model. This provides further evidence that7

commuters take taxis to subway stations for commuting, implying that taxis can8

complement the public transit system by serving as a feeder mode.9

The MGWR model provides a deeper understanding of the spatial10

heterogeneity in the impact of built environment characteristics on taxi ridership. First,11

spatial heterogeneity exists in the distributions of parameter estimation of each12

independent variable. For example, the positive estimated coefficients of residential13

density decrease from north to southeast during the morning peak, whereas bus14

coverage increases from the center to the periphery. Second, we find that residential15

density has a more profound effect on taxi demand in places with limited public16

transit access. Third, the positive impact of public transit on taxi demand follows the17

law of diminishing returns, which may suggest that improving the bus coverage in the18

outskirts, where there is less bus coverage, can encourage more commuters to take19

taxis to bus stops nearby and then take the bus to work. This may be able to reduce20

private vehicle usage and reduce traffic stress and carbon emissions in the downtown21

area. The results also reveal that an increase in road density is possibly related to more22
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taxi demand in the southern area with less road density than in the northern parts with1

a dense road network. This phenomenon implies that the current road facilities cannot2

meet the public travel demand there. In addition, we find that the unique urban layout3

of Beijing, where the central part possesses crucial political function, needs to be4

considered in relevant research. According to our findings, we recommend that the5

relevant departments pay enough attention to the spatial non-stationarity in the6

determinants of taxi ridership’ distribution. Moreover, the construction of the public7

transit system should be improved in suburban areas with less public transit coverage,8

which may effectively decrease the public demand for private cars and reduce inner-9

city congestion. Planning should also take into account the need for taxi services to10

complement these extensions of public transit, in order to serve first and last-mile11

needs. In addition, building-height restrictions in Beijing metropolitan area should be12

reconsidered, which may contribute to low-density suburbanization and increase13

residents’ commuting costs, but provide relatively minor benefits to the service level14

of the urban transportation system.15

Several limitations remain in this study. One is that the results of this paper are16

based on a 2015 Beijing dataset. Analysis using more recent data sources and data17

from other cities of different scales to confirm the findings of this study would be an18

important direction for future research. Furthermore, while this study addresses spatial19

heterogeneity, temporal heterogeneity may also exist. This is also an area that requires20

further study. There is a large scope for developing our work in the future. First, if21

more data are available, such as taxis trip lengths, vehicle ownership, and bikeshare22
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ridership, we are allowed to examine the complex substitute and complementary1

relationships among different travel modes, which has important implications for2

reductions in both traffic congestion and greenhouse gas emissions. Besides, further3

research should investigate the causal mechanisms between the built environment4

characteristics and travel behavior through a more valid research design, such as5

combining with the qualitative research and longitudinal data collection. That will6

help to unravel more complexities in the impact of the built environment on travel7

behavior.8

9
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Appendix 1 Literature summary

Spatial
relationship
considered

Source Methodology Research objectives Transportation
Mode Research Area

NO
Schaller, B. 2005. A regression model of the
number of taxicabs in US cities. Journal of
Public Transportation, 8(5): 63.

Multiple regression modeling Identifying the factors that generate taxi
demand in the United States. Taxi 118 U.S. cities

NO

Liu, Y., Wang, F., Xiao, Y., and Gao, S. 2012.
Urban land uses and traffic ‘source-sink areas’:
Evidence from GPS-enabled taxi data in
Shanghai. Landscape and Urban Planning,
106(1): 73-87.

Classification tree method;
Correspondence analysis

Estimating associations between land use
and traffic patterns. Taxi Shanghai

NO

Yang, C., and Gonzales, E. J. 2014. Modeling
taxi trip demand by time of day in New York
City. Transportation Research Record,
2429(1): 110-120.

Multiple linear regression
model

Estimating taxi demand for each hour of
the day. Taxi New York City

NO

Gong, L., Liu, X., Wu, L., and Liu, Y. 2016.
Inferring trip purposes and uncovering travel
patterns from taxi trajectory data. Cartography
and Geographic Information Science, 43(2):
103-114.

Bayes’ rules Predicting trip purposes of taxi
passengers. Taxi Shanghai

NO

Zhang, W., Ukkusuri, S. V., and Lu, J. J. 2017.
Impacts of urban built environment on empty
taxi trips using limited geolocation data.
Transportation, 44(6): 1445-1473.

Hazard-based duration model Exploring the determinants of empty taxi
trip duration. Taxi New York City

NO

Wu, Z. and Zhuo, J. 2018. Impact of urban
built environment on urban short-distance taxi
travel: the case of Shanghai. IOP conference
series: earth and environmental science, 153:
s. 062019.

Multiple regression model
Analyzing the spatial impact of the built
environment on short-distance taxi riders’
travel behaviour.

Taxi Central area of
Shanghai

NO

Alemi, F., Circella, G., Handy, S., and
Mokhtarian, P. 2018. What influences travelers
to use Uber? Exploring the factors affecting
the adoption of on-demand ride services in
California. Travel Behaviour and Society, 13:
88-104.

Binary logit models Investigating influence factors for on-
demand ride service utility.

On-demand ride
services like Uber
and Lyft

California

NO
Liu, Q., Ding, C., and Chen, P. 2020. A panel
analysis of the effect of the urban environment
on the spatiotemporal pattern of taxi demand.

Generalized additive mixed
model (GAMM)

Exploring factors associated with
temporal and spatial distributions for taxi
pick-up densities.

Taxi Central area of
the Beijing



Travel Behaviour and Society, 18: 29-36.

NO

Yu, H., and Peng, Z. R. 2020. The impacts of
built environment on ride-sourcing demand: A
neighborhood level analysis in Austin, Texas.
Urban Studies, 57(1): 152-175.

Structural equation model Estimating the impacts of built
environment on ride-sourcing demand Uber Austin

NO

Zhang, B., Chen, S., Ma, Y., Li, T., and Tang,
K. 2020. Analysis on spatiotemporal urban
mobility based on online car-hailing data.
Journal of Transport Geography, 82: 102568.

Ordered logistic regression
Investigating the correlations between the
intensity of ride-hailing services and
POIs.

Ride-hailing service
through Didi
platform

Chengdu

NO

Wang, J., Yamamoto, T., and Liu, K. 2021.
Spatial dependence and spillover effects in
customized bus demand: Empirical evidence
using spatial dynamic panel models. Transport
Policy, 105: 166-180.

Multiple regression model
Exploring the spatial impact of the built
environment on short-distance taxi riders'
travel behavior.

Taxi Central area of
Shanghai

NO

Dean, M. D., and Kockelman, K. M. 2021.
Spatial variation in shared ride-hail trip
demand and factors contributing to sharing:
Lessons from Chicago. Journal of Transport
Geography, 91: 102944.

Panel regression

Analyzing the relationship among spatial
distribution of shared transportation
network company ridership, demographic
characters and land use conditions.

Online ride-hail
service (e.g., Uber,
Lyft, and Via)

Chicago

NO

Tu, M., Li, W., Orfila, O., Li, Y., and Gruyer,
D. 2021. Exploring nonlinear effects of the
built environment on ridesplitting: Evidence
from Chengdu. Transportation Research Part
D: Transport and Environment, 93: 102776.

Machine learning method Examining the non-linear effects of the
built environment on ride pooling.

Ride-hailing service
through Didi
platform

Chengdu

Spatial
autocorrelation

Correa, D., Xie, K., and Ozbay, K. 2017,
January. Exploring the taxi and Uber demand
in New York City: An empirical analysis and
spatial modeling. In 96th Annual Meeting of
the Transportation Research Board,
Washington, DC.

Linear models, spatial error
models, and spatial lag models

Identifying the influence factors for taxi
and Uber ridership spatial distribution. Taxi and Uber New York City

Spatial
autocorrelation

Lavieri, P. S., Dias, F. F., Juri, N. R., Kuhr, J.,
and Bhat, C. R. 2018. Amodel of ride-sourcing
demand generation and distribution.
Transportation Research Record, 2672(46):
31-40.

Spatially lagged multivariate
count model; Fractional split
model

Analyzing the spatial distribution of ride-
sourcing trips generated on different
days of a week and identifying the
influencing factors.

Ride-sourcing Austin

Spatial
autocorrelation

Pan, R., Zhang, S., Yang, H., Xie, K., and Wen,
Y. 2019, October. Analysis of Spatial Equity in
Taxi Services: A Case Study of New York City.
In 2019 IEEE Intelligent Transportation
Systems Conference (ITSC) (pp. 2659-2664).
IEEE.

Linear models, spatial error
models, and spatial lag models

Exploring the spatial equity of taxi
services and the impact of e-hailing taxis
on transport equity.

Traditional taxi
services and e-
hailing taxis

New York City



Spatial
autocorrelation

Wang, M., Chen, Z., Mu, L. and Zhang, X.
2020. Road network structure and ride-sharing
accessibility: Evidence from a network science
perspective. Computers Environment and
Urban Systems, 80: 101430.

Spatial Durbin model (SDM)
Investigating the relationship between
road network structure and ride-sharing
accessibility

Uber Atlanta

Spatial
autocorrelation

Ni, Y., and Chen, J. 2020. Exploring the
Effects of the Built Environment on Two
Transfer Modes for Metros: Dockless Bike
Sharing and Taxis. Sustainability, 12(5): 2034.

K-means clustering; spatial lag
model

Comparing the temporal-spatial
distribution of dockless bike sharing and
taxis as first/last-mile solutions and
exploring how sociodemographic and
built-environment factors influence their
usage.

Dockless bike
sharing (DBS) and
taxis

Beijing

Spatial
autocorrelation

Zhang, W., Le, T. V., Ukkusuri, S. V., and Li,
R. 2020. Influencing factors and heterogeneity
in ridership of traditional and app-based taxi
systems. Transportation, 47(2): 971-996.

Mixture modeling structure of
spatial lag and simultaneous
equation model

Investigating the factors influencing
traditional taxi and app-based taxi service
demand considering spatial, temporal,
and modal heterogeneity.

Traditional taxi
services and app-
based taxi service

New York City

Spatial
autocorrelation

Wang, J., Yamamoto, T., and Liu, K. 2021.
Spatial dependence and spillover effects in
customized bus demand: Empirical evidence
using spatial dynamic panel models. Transport
Policy, 105: 166-180.

Spatial dynamic panel model

Modelling proposes customized bus (CB)
demand by considering service supply
level, demographic characteristics, land
use and public service accessibility.

Customized bus Dalian

Spatial
heterogeneity

Qian, X., and Ukkusuri, S. V. 2015. Spatial
variation of the urban taxi ridership using GPS
data. Applied geography, 59: 31-42.

Geographically weighted
regression (GWR)

Modeling the spatial heterogeneity of taxi
ridership. Taxi New York City

Spatial
heterogeneity

Nam, D., Hyun, K., Kim, H., Ahn, K., and
Jayakrishnan, R. 2016. Analysis of grid cell–
based taxi ridership with large-scale GPS data.
Transportation Research Record, 2544(1):
131-140.

Geographically weighted
regression (GWR)

Exploring spatial correlations among
transit, urban density and taxi ridership. Taxi Seoul

Spatial
heterogeneity

Li, B., Cai, Z., Jiang, L., Su, S., and Huang, X.
2019. Exploring urban taxi ridership and local
associated factors using GPS data and
geographically weighted regression. Cities, 87:
68-86.

Hierarchical clustering;
Stepwise linear regression;
Geographically Weighted
Regression (GWR)

Exploring the spatial-temporal pattern
and local associated factors of taxi
trajectory.

Taxi
Majority of the
metropolitan
area of Beijing

Spatial
heterogeneity

Yu, H., and Peng, Z. R. 2019. Exploring the
spatial variation of ride-sourcing demand and
its relationship to build environment and
socioeconomic factors with the geographically
weighted Poisson regression. Journal of
Transport Geography, 75: 147-163.

Geographically
Weighted Poisson
Regression (GWPR)

Analyzing the impact of the built
environment on ride-sourcing demand
considering the spatial heterogeneity.

Ride-sourcing trip
through Ride Austin
platform

Austin

Spatial
heterogeneity

Zhang, W., Le, T. V., Ukkusuri, S. V., and Li,
R. 2020. Influencing factors and heterogeneity

Mixture modeling structure of
spatial lag and simultaneous

Investigating the factors influencing
traditional taxi and app-based taxi

Traditional taxi
services and app- New York City



in ridership of traditional and app-based taxi
systems. Transportation, 47(2): 971-996.

equation model demand considering the spatial, temporal,
and modal heterogeneity.

based taxi service

Spatial
heterogeneity

Yuan, C., Duan, Y., Mao, X., Ma, N. and Zhao,
J. 2021. Impact of the mixed degree of urban
functions on the taxi travel demand. PLOS
ONE, 16 (3): s. e0247431.

Geographically Weighted
Regression (GWR)

Investigating the relationship between the
mixed degree of urban internal functions
and the residents’ taxi travel demand.

Taxi Xi’an

Spatial
heterogeneity

Chen, C., Feng, T., Ding, C., Yu, B., and Yao,
B. 2021. Examining the spatial-temporal
relationship between urban built environment
and taxi ridership: Results of a semi-
parametric GWPR model. Journal of
Transport Geography, 96: 103172.

Semi-parametric
Geographically Weighted
Poisson Regression (SGWPR)

Exploring the determinants of urban taxi
ridership. Taxi Shanghai

Spatial
heterogeneity

Wang, S., and Noland, R. B. 2021. Variation in
ride-hailing trips in Chengdu, China.
Transportation Research Part D: Transport
and Environment, 90: 102596.

Geographically Weighted
Regression (GWR)

Investigating relations between spatial,
social-economic factors and ride-hailing
service demand.

Ride-hailing service
through Didi
platform

Chengdu



Appendix 2 VIF test results

Morning peak
taxi pick-ups

Morning peak
taxi drop-offs

Evening peak
taxi pick-ups

Evening peak
taxi drop-offs

Employment density
(log)

4.09 4.09

Residential density
(log)

3.27 3.27

Average housing
price (log)

1.53 1.59 1.59 1.53

Share of 200-meter
bus coverage in the
grid cell

2.57 2.58 2.58 2.57

Share of 400-meter
subway coverage in
the grid cell

1.44 1.44 1.44 1.44

Road area ratio for
each grid

1.96 1.94 1.94 1.93

# of buildings for
each grid (log)

2.58 2.54 2.54 2.58

# of stories in
buildings for each
grid (log)

3.04 3.00 3.00 3.04

# of commercial-and-
recreational POI
(log)

5.25 5.22 5.22 5.25

# of manufacturing-
and-office POI (log)

1.93 2.70 2.93 2.36

# of residence-and-
related-facility POI
(log)

5.43 5.25 5.25 5.43

# of public-
management-and-
service POI (log)

5.70 5.68 5.68 5.70

Mean VIF 3.19 3.28 3.28 3.19
Note: # represents the number of this variable.



Appendix 3 Regression results of GWR Model

(a) Morning Pick-up Model

Morning Pick-up Model
Dependent variable: Number of
morning-peak pick-ups (log)

GWR

Median Min Max St. Dev.
Residential density (log) 0.128 -0.001 0.332 0.068
Share of 200-meter bus coverage in the
grid cell

0.156 0.048 0.3 0.051

Share of 400-meter subway coverage in
the grid cell

0.01 -0.048 0.116 0.033

Road area ratio for each grid 0.148 0.059 0.389 0.082
Average housing price (log) 0.038 -0.06 0.162 0.047
# of buildings for each grid (log) 0.002 -0.193 0.087 0.058
# of stories in buildings for each grid
(log)

0.198 -0.001 0.297 0.071

# of commercial-and-recreational POI
(log)

0.059 -0.149 0.269 0.079

# of manufacturing-and-office POI
(log)

0.043 -0.038 0.217 0.065

# of residence-and-related-facility POI
(log)

0.071 -0.106 0.259 0.072

# of public-management-and-service
POI (log)

0.219 -0.064 0.571 0.111

Intercept 0.047 -0.154 0.475 0.144
Bandwidth 206
AICc 396.421
R2 0.924
Adj. R2 0.912

(b) Morning Drop-off Model

Morning Drop-off Model
Dependent variable: Number of
Evening-peak Drop-offs (log)

GWR

Median Min Max St. Dev.
Employment density (log) 0.369 0.029 0.93 0.211
Share of 200-meter bus coverage in
the grid cell

0.1 -0.083 0.207 0.059

Share of 400-meter subway coverage
in the grid cell

0.047 -0.056 0.161 0.048

Road area ratio for each grid 0.152 0.009 0.346 0.072
Average housing price (log) 0.044 -0.159 0.2 0.08
# of buildings for each grid (log) -0.033 -0.277 0.133 0.085
# of stories in buildings for each grid
(log)

0.081 -0.108 0.246 0.061

# of commercial-and-recreational
POI (log)

-0.046 -0.342 0.083 0.095

# of manufacturing-and-office POI
(log)

0.084 -0.088 0.337 0.095

# of residence-and-related-facility
POI (log)

-0.004 -0.311 0.275 0.124

# of public-management-and-service
POI (log)

0.222 -0.026 0.612 0.114

Intercept 0.087 -0.203 0.627 0.161
Bandwidth 150
AICc 475.122
R2 0.926



Adj. R2 0.909

(c) Evening Pick-up Model

Evening Pick-up Model
Dependent variable: Number of
morning-peak pick-ups (log)

GWR

Median Min Max St. Dev.
Employment density (log) 0.237 0.035 0.902 0.159
Share of 200-meter bus coverage in
the grid cell

0.141 -0.024 0.249 0.061

Share of 400-meter subway coverage
in the grid cell

0.027 -0.059 0.141 0.038

Road area ratio for each grid 0.146 0.017 0.401 0.087
Average housing price (log) 0.041 -0.114 0.177 0.068
# of buildings for each grid (log) -0.02 -0.227 0.144 0.082
# of stories in buildings for each grid
(log)

0.078 -0.08 0.224 0.066

# of commercial-and-recreational POI
(log)

0.135 -0.133 0.278 0.079

# of manufacturing-and-office POI
(log)

0.119 -0.036 0.281 0.07

# of residence-and-related-facility POI
(log)

0.001 -0.222 0.216 0.097

# of public-management-and-service
POI (log)

0.126 -0.164 0.396 0.116

Intercept 0.06 -0.17 0.666 0.183
Bandwidth 150
AICc 270.966
R2 0.945
Adj. R2 0.932

(d) Evening Drop-off Model

Evening Drop-off Model
Dependent variable: Number of
Evening-peak Drop-offs (log) GWR

Median Min Max St. Dev.
Residential density (log) 0.134 -0.117 0.387 0.1
Share of 200-meter bus coverage in
the grid cell

0.114 -0.025 0.198 0.041

Share of 400-meter subway coverage
in the grid cell

0.033 -0.023 0.094 0.027

Road area ratio for each grid 0.121 0.037 0.286 0.067
Average housing price (log) 0.041 -0.098 0.197 0.06
# of buildings for each grid (log) 0.121 0.037 0.286 0.067
# of stories in buildings for each grid
(log)

-0.014 -0.277 0.12 0.068

# of commercial-and-recreational
POI (log) 0.220 0.216 0.223 0.002
# of manufacturing-and-office POI
(log) 0.082 0.079 0.089 0.003
# of residence-and-related-facility
POI (log) 0.062 0.056 0.070 0.004
# of public-management-and-service
POI (log) 0.106 -0.220 0.287 0.077
Intercept 0.035 -0.18 0.606 0.168
Bandwith 166
AICc 254.677



R2 0.944
Adj. R2 0.932

Note: (1) Note: # represents the number of this variable; (2) * p-value < 0.05; ** p-value <0.01; *** p-

value <0.001
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