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Exploring spatial heterogeneity in the impact of built environment on taxi
ridership using multiscale geographically weighted regression
1. Introduction
There is much evidence that the built environment has a significant and substantial
impact on travel outcomes (Cervero 2002; Ewing and Cervero 2010; Ewing et al.
2015; Zhu 2012, 2013; Zhu and Mason 2014; Zhu et al. 2020, 2022a). As an
imperative component of urban transportation, taxi is providing all-day and flexible
service that can complement public transit system and reduce private vehicle usage.
According to the National Bureau of Statistics!, there are over one million taxis in
China nationally. Especially in megacities like Beijing, they are an effective solution
to the first-mile and last-mile problems (Rayle et al., 2014; Zhu et al., 2023).
Understanding the factors that affect passenger demand and taxi supply during
morning and evening peaks is crucial for improving the for-hire taxi industry’s service
quality (Schaller, 2005). Discovering spatial patterns of taxi trips is also beneficial to
mitigating traffic congestion and greenhouse gas (GHG) emissions (Cetin and Yasin
Eryigit 2011). This study aims to comprehensively analyze the associations between
built environment factors and taxi passengers’ travel behavior.

Some recent studies have considered the spatially heterogeneous effects of
built environment variables in travel behavior analysis (eg., Blainey 2010; Blainey

and Preston 2013; Feuillet et al. 2015; Qian and Ukkusuri 2015; Tu et al. 2018; Wang

! https://data.stats.gov.cn/easyquery.htm?cn=C01andzb=A0B07andsj=2015
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and Noland 2021). An improved understanding of the associations between travel
behaviors and the built environment is crucial for decision makers to make informed
land use policies, and consequently influence broad sustainability objectives, such as
reducing traffic congestion, energy consumption, and greenhouse gas (GHQG)
emissions. To better capture the spatially non-stationary process and obtain more
accurate estimates, local models such as geographically weighted regression (GWR)
have been introduced in transportation and urban management studies (Qian and
Ukkusuri 2015; Wang and Chen 2017; Wang and Noland 2021; Yu and Peng 2019;
Yu et al. 2018). However, one major assumption of GWR is that all of the
associations between outcome variables and explanatory variables vary at a single
spatial scale using the same bandwidth, which may not accurately characterize spatial
contexts. The Multiscale Geographically Weighted Regression (MGWR) model
allows multiple spatial scales to be expressed simultaneously, thus outperforming
GWR. The main contribution of this paper is to employ this novel modelling approach
to examine the spatially heterogeneous impacts of built environment characteristics on
taxi ridership. This can provide better empirical evidence for taxi passengers’ travel
patterns in different spatial contexts as compared to the traditional GWR model. We
visualize the local estimates, to illustrate the heterogeneity of determinants for taxi
ridership’s spatiotemporal distribution. The results not only expand the literature on
the spatially non-stationarity associations between local built environment factors and
taxi ridership distribution but also provide valuable insight into the development of

transportation policies at a finer scale.
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This study begins by presenting the spatial distributions of taxi ridership in
two peak periods through GIS techniques. It then applies MGWR to reveal the spatial
heterogeneity for the impacts of different built environment variables on taxi trips.
The MGWR model is found to be a powerful tool that can provide a more accurate
estimation result and nuanced analysis of the spatial variation in the impacts of
different built environment characteristics on taxi ridership. This model achieves
better goodness of fit and has more explanatory power. Based on the results,
significant multiscale spatial heterogeneity is observed in the associations between
spatial contexts and taxi trip pick-ups/drop-offs. We find that residential density is
positively associated with taxi demand in areas with less public transport coverage
than surrounding units. Moreover, improving bus coverage in areas with low coverage
may attract more commuters to choose taxi plus bus mode for commuting instead of
purchasing private vehicles. The results also indicate that the positive effects of road
density on taxi ridership are spatially heterogeneous. Policymakers can benefit from
the more accurate and detailed understanding of the spatial determinants of taxi
ridership provided by our work. This may help to allocate available taxi resources
within the urban intermodal transportation system, reducing traffic stress in the city
center. In addition, since ride-hailing services like Uber and Didi have grown in
popularity, our results could potentially be a valuable reference for integrating these

novel mobility services into the traditional transport system effectively and efficiently.
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2. Literature review

2.1 Factors that influence ridership patterns

There are a wide range of studies concerning the factors that may influence travel
ridership. Apart from internal factors like cost, duration, and quality of service
(Kanafani, 1983), built environment factors such as population density, development
level, and public transport access have been shown to substantially affect travel
behaviors. These built environment factors are often summarized as the 5D -- Density,
Design, Diversity, Distance to transit and Destination accessibility (Ewing and
Cervero 2010). This theory guides our study’s independent variable selection. Based
on the 5D principle and existing research (i.e., Currans and Muhs 2015; Qian and
Ukkusuri 2015; Wang and Noland 2021; Yang et al. 2018; Yuan, Raubal and Liu
2012;), a set of standard variables are adopted in this study. For density, this paper
includes residential density and employment density at the 1km*1km grid level. For
design, the model includes the road area ratio for each grid, which measures the road
coverage. For distance to transit, this study uses bus coverage and the subway
coverage to measure public transport service level. For diversity, average housing
price per m? and construction density (the number of buildings for each grid) are
adopted.

Furthermore, for destination accessibility, the model includes the number of
different categories of POIs (points of interest) to take account of the effects of

different trip purposes. In particular, the existing literature has shown that transfer
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activities between transportation hubs have significant impacts on the travel demand
for ridehailing or for-hire taxi passengers (Wang and Noland, 2021). In addition,
housing prices and income have also been considered in a wide range of relevant
studies as indicators of socioeconomic status (see Qian and Ukkusuri 2015; Wang and
Cao 2017; Wang and Noland 2021; Yang et al. 2018; Yu and Peng 2019;).

Alongside a large body of work focusing on buses, subways and private cars
(see Kain and Liu 1999; Kuby, Barranda and Upchurch 2004; Haire and Machemehl
2007; Tao et al. 2014; Chakour and Eluru 2016), ridehailing services like Uber and
Didi have also received a tremendous amount of attention (Yu and Peng 2019; Zhang
et al. 2020; Wang and Noland 2021). For example, Alemi et al. (2018) used online
survey data in California to explore the factors affecting on-demand ride services like
Uber and Lyft using binary logit models. They found that age, education level,
lifestyle, land use mix and auto accessibility significantly affect the probability of
using on-demand ride services. Tu et al. (2021) utilized machine learning methods
with Didi ridesourcing requests and GPS data from Chengdu to examine the nonlinear
effects of built environment factors on ride pooling. They argued that these built
environment factors had substantial nonlinear impacts on the likelihood of ride
pooling. Based on the same dataset, Zhang et al. (2020) used ordered logistic
regression to investigate the correlation between the intensity of ridehailing services
and POlIs. Their results indicated that regions with high travel intensity showed spatial
agglomeration patterns, and different amenities had different impacts on travel

intensity. Nevertheless, the number of studies empirically examining the association
5
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between for-hire taxi ridership and various built environment characteristics is still
limited compared to that for other transportation modes. Different travel modes may
respond to the built environment differently. Drawing lessons from the classic 5D
framework, this study investigates the spatial relationships between built environment

context and taxi demand.

2.2 Spatial heterogeneity of built environment effects in travel behavior

studies

Previous studies have examined the spatial heterogeneity of built environment effects
on travel behavior and have demonstrated the importance of accounting for spatial
non-stationarity in the relationship between local contexts and travel behaviors (eg.,
Blainey 2010; Blainey and Preston 2013; Feuillet et al. 2015; Li et al. 2021; Paez et al.
2007; Qian and Ukkusuri 2015; Tu et al. 2018; Xu et al. 2021; Wang and Noland
2021). For instance, Paez et al. (2007) adopted mixed ordered Probit models to
investigate spatial and demographic variability in travel behavior of the elderly based
on the travel survey data collected in the Hamilton Metropolitan Area, Canada. They
pointed out that the determinants of trip-making propensity were not spatially
homogeneous, and spatial models (mixed ordered Probit model) performed better than
conventional non-spatial models (ordered Probit model). To predict the trip volume of
local rail, Blainey (2010) compared multiple linear regression and GWR models and
pointed out that the latter had a better fit and spatial parameter variation existed.

Employing the geographically weighted Poisson regression (GWPR) model, Feuillet
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et al. (2015) investigated how residential environment characteristics influence
commuting behavior. Their results indicate that the magnitude and statistical
significance level of different neighborhood environment factors vary by location.
Based on NYC taxi GPS data, Qian and Ukkusuri (2015) found that taxi demand was
location-sensitive, meaning that the relationship between taxi ridership and its
determinants, including socio-demographic and built environment characteristics,
were not stationary across urban spaces. Liu et al. (2020), Tu et al. (2018), and Wang
and Noland (2021) similarly argued that it is necessary to account for spatial
heterogeneity when analyzing the influence of the built environment on travel
behavior.

Conventional global models, such as the ordinary least squares (OLS) model
and Probit model, assume that all the relationships between outcome variable and
explanatory variables are stationary across spaces (Brunsdon, Fotheringham and
Charlton 1996). This assumption does not hold in many real cases. Several empirical
studies focusing on factors influencing travel behavior have applied local models to
calibrate the spatially non-stationary process. Specifically, the GWR model is one of
the typical alternative local models which is able to capture the spatial non-
stationarity in the spatial process (Brunsdon, Fotheringham and Charlton 1996). It
allows local regression coefficients for each independent variable to vary at different
locations; this has been used to examine the spatial patterns and determinants of
ridership in a few recent studies (Qian and Ukkusuri 2015, Wang and Noland 2021;

Yu and Peng 2019). For example, Yu and Peng (2019) used the GWPR model to
7
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explore the spatial relationships between spatial contexts and ridesourcing demand in
Austin and found significant spatial heterogeneity in the effects of socioeconomic and
built environment characteristics. Wang and Noland (2021) came to similar
conclusions using data on Didi Chuxing trips in Chengdu to analyze the association
between the built environment and online ride-hailing ridership using the GWR model.
The GWR or GWPR models usually achieve better goodness of fit than the
traditional global model (Fotheringham, Brunsdon and Charlton 2003); however, they
both regard the spatial scale constant among all spatial processes. Considering the
existence of multiscale spatial effects of different built environment variables on the
distribution of taxi ridership, this study adopts the MGWR, a multiscale extension of
the GWR model, to investigate the spatial variation in the associations between
associations different built environment characters and taxi ridership. Compared with
GWR, MGWR has the advantage of accurately capturing realistic spatial
heterogeneity. This avoids misleading conclusions resulting from ignoring the scale
variations for different spatial processes, and further helps to make more effective
decisions for local governments. Meanwhile, it can reduce collinearity in the fitting
process and diminish parameter estimation bias (Oshan, et al. 2019). A table
summarizing the literature is provided in Appendix 1. It can be seen both spatial
autocorrelation and spatial heterogeneity have been increasingly noticed in recent
years. On the one hand, many studies adopt spatial econometric models to capture the
spillover effects embedded in built environment effects or travel demands, namely,

spatial autocorrelation. On the other hand, for spatial heterogeneity, most studies use
8
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GWR, Geographically Weighted Poisson Regression (GWPR) and Semi-parametric
Geographically Weighted Poisson Regression (SGWPR), and some studies use other
methods like simultaneous equation modeling. However, none of these studies
address the varying range of spatial processes for different independent variables. To
the best of our knowledge, this paper is the first attempt to apply MGWR to examine
the associations between spatial contexts and taxi ridership. Based on the existing
theories, this study provides a new methodology for in-depth analysis of travel

behavior.

3. Data and methodology

3.1 Study area and variables

The study area was defined as the central urban area of Beijing, within the S5th Ring
Road (see Figure 1), because the mobile signalling data and housing price data used in
this paper are only available for the central area. The study area covers most of the
areas of central Beijing, including the entire Dongcheng and Xicheng municipal
districts and parts of the Haidian, Shijingshan, Chaoyang, Daxing and Fengtai
municipal districts. Beijing's public management departments and social organizations
are mostly distributed in central areas within the 4th Ring Road. Three traditional
commercial districts (Qianmen, Xidan, Wangfujing) are all located inside the 2nd
Ring Road, while many new comprehensive commercial areas such as Madian,

Chaowai Street, Wudaokou and Wangjing are located between the 2nd and 4th Ring

9
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Road in the north. In addition, more than half of the office buildings are situated in
Chaoyang District and Haidian District, while lots of manufacturing is located outside
the southern 4th Ring Road (Tian, Wu and Yang 2010). The chosen study area thus
encompasses the core of urban life in Beijing. To address the modifiable areal unit
problem (MAUP) (Openshaw and Taylor 1981), we divide this study area into 683
rectangular zones (1km % 1km) instead of using administrative units directly. This
grid size is commonly used in research on Chinese metropolises such as Beijing and

Shanghai (Liu et al. 2015; Kong et al. 2017; Gong et al. 2016; Zhu et al. 2022b).
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Figure 1 Research area

The dependent variables in this study are the number of taxi? pick-ups/drop-

offs for each grid in the morning/evening peak time. The taxi trajectory data we used

2 Note that the taxi in this paper specifically refers to traditional taxis that do not include Transportation Network
Company (TNC) services.
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are generated by about 18,000 taxis from several anonymous taxi companies from
April 1st to 26th 2015, comprehensively reflecting the spatial characteristics of taxi
passengers’ travel behavior in Beijing. Given that the urban transportation system
faces many challenges during rush hours, it is necessary to investigate the
determinants of taxi trips’ spatial distribution. Therefore, two time periods--morning
peak hours (7 to 9 AM) and evening peak hours 5 to 7 PM) on weekdays are selected.
We calculated the average hourly taxi trip pick-ups/drop-offs in two peak periods for
each grid, respectively.

The independent variables are selected according to the 5D principle (Ewing
and Cervero 2010). Specifically, we select the following built environment and
socioeconomic variables as factors potentially influencing taxi ridership: residential /
employment density, average housing price per m?, bus coverage (share of 200m bus
coverage in a grid), subway coverage (share of 400m subway coverage in a grid), road
coverage (road area ratio for each grid), the number of buildings for each grid, the
amount of floors in buildings for each grid, and the amount of certain types of POIs
(Figure 2). All independent variables were collected in the same period as the

dependent variable.

11



Local build environment factors

Density -

Residential density (log)
Employment density (log)

Design:

Ratio of road area to total land area

Distance to transit:

Ratio of land covered by 200m radius from bus stops
Ratio of land covered by 400m radius from subway stations

Diversity :

Total number of buildings(log)
Average number of stories of buildings

Destination accessibility =

Number of POIs in commercial and recreational services (log)

Number of POIs in manufacturing and offices (log)
Number of POIs in residence and related facilities (log)
Number of POIs in public management and services (log)

Travel behavior:

Morning-peak pick-ups/
drop-offs
Evening-peak pick-ups/
drop-offs

Socioeconomic status:
» average housing price per m* (log)

Figure 2 Research framework for major impact factors of taxi passengers’ travel behavior
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Since official fine-grained employment and residential density are unavailable
in Beijing, we calculated these variables based on mobile signaling data. Mobile
signaling data has been widely used to estimate the number of employers and
residents in a specific geographical range (Ding, Niu and Song 2016; Louail et al.
2014). The mobile signalling data used in this research was collected from China
Unicom, one of China’s mainstream mobile carriers, provided by Smart Steps Digital
Technology company. The residential location and workplace of each user were
identified according to duration and frequency during weekdays, and then the number
of employees and residents were aggregated by each unit.

This study uses the sum of road area per grid cell as the measure of road area
density. The road network data is collected from OpenStreetMap
(https://www.openstreetmap.org/). We calculated the road area of each grid by
multiplying road length, lane numbers and lane width. Since each grid has a total area
of 1km?, the road area of a grid is numerically equivalent to the road area ratio. Public
transit availability must also be considered in travel behavior analysis. Though
subway and bus are both major public transport modes, there are some differences
regarding capacities, distribution and service ranges. We specify the geolocation of
bus stops and subway stations and generate a 200-meter buffer for each bus stop and a
400-meter buffer for each subway station. The radius definition is drawn from
previous studies on acceptable transfer between transport modes (Ishaque and Noland

2008; Wang and Noland 2021). To generate the variables used in the model, we
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calculated the ratio of the land area within a 200-meter of bus stops or a 400-meter
service radius of subway stations to the total land area (1km?) in each grid.

This study introduces the building density and the average amount of stories
for each cell as independent variables to measure the land development intensity. The
original geospatial data of buildings were collected from AMap®. We also include the
counts of four types of POIs in each grid, which were scraped from Baidu Map*.

Since no official micro-level socioeconomic data on actual personal income or
family financial conditions is available, this paper uses housing prices to measure
household income, as practiced in previous studies (Zhang, Jia and Yang 2016). We
collected housing prices in 2015 from Lianjia (https://bj.lianjia.com), a popular real
estate transaction platform in China. We computed the average housing price of all
housing units for each grid. In addition, for some cells (around 26%) that lack housing
prices, this study follows previous studies in adopting spatial interpolation methods to
estimate the missing data (e.g., Chica-Olmo 2007; Hu et al. 2016; Martinez, Lorenzo
and Rubio 2000; Zhang, Tan and Tang 2015). Specifically, we employ the empirical
Bayesian Kriging approach for spatial interpolation (Omre 1987; Krivoruchko 2012),
which has proven to be capable of achieving better global prediction with limited
sample data (Montero-Lorenzo, Larraz-Iribas and Paez 2009). The spatial
interpolation was implemented in ArcGIS Desktop 10.7, following the official Help
documentation. We implied K-Bessel as the semivariogram model, which performs

best in cross-validation.

3 http://Ibs.amap.com/
4 http://map.baidu.com
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3.2 MGWR model

As mentioned in section 1, GWR is a local regression model that can capture the
spatial heterogeneity embedded in the spatial process by allowing parameter estimates
for each research unit. A critical concept in GWR is the bandwidth, representing the
spatial scale for each local regression equation. One shortcoming of GWR is that it
assumes that the bandwidth for each independent variable is constant (Fotheringham,
Yang and Kang 2017). However, it is more likely that different built environment,
socioeconomic and demographic variables may have different spatial scales. That is to
say, the constant bandwidth for each independent variable in GWR possibly leads to
misspecification of scale for some variables (Oshan et al. 2019) and unnecessary

noise (Gu et al. 2021).

MGWR is the multiscale extension of GWR that allows different optimal bandwidths
for different independent variables in the model. That enables multiscale modeling,
which provides a more accurate and robust stimulation for actual spatial processes
(Fotheringham, Yang and Kang 2017; Yu et al. 2018). This can be expressed as

follows (Equation 1).

= o, )+ c, ) + (1)
Where  o( , ) represents the intercept for observation i at the location
( , );  represents the kth independent variable; indicates the kth coefficient,
and is the bandwidth of its kernel function; and 1is the error term. The criterion

for selecting the optimal bandwidths is the corrected Akaike information criteria
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(AICc). Following Fotheringham, Yang and Kang (2017), the optimal bandwidth in
this study is calculated by a bi-square kernel with a back fitting algorithm for
calibration. Its main idea is to assume that all other parameters are known except the
parameter that is to be calibrated currently. Proportional change in the residual sum of

squares (RSS) convergence criterion is used as the convergence criterion (Equation 2).

ol E— 2
Where the is the score of change according to RSS; represents the
RSS in the calculation this time; represents the RSS in the calculation last time.

4. Results

4.1 Model comparison

As demonstrated in Table 1, the MGWR allows each independent variable to have
different optimal bandwidths that depict the influencing scales for the spatial process
(Lao and Gu 2020). Because both the morning pick-up model and the evening drop-
off model consider the impacts of residential density on taxi trips, we align this pair
together in Table 1, and so do the morning drop-off model and evening pick-up model,
which both include the employment density. The influencing scales for residential
density, commercial-and-recreational POI, and residence and related facilities
encompass nearly the entire study area in all four models, indicating these variables
have large influencing scales with global bandwidths during both peaks. In addition,
bandwidth for the share of 200-meter bus coverage in the grid cell and average

16
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housing prices is also 682 grid units (out of 683) in all models except the Morning
drop-off model. Compared with these variables, the influencing scales of employment
density, the road area ratio, and construction density are much smaller. The bandwidth
of average housing price is small in the Morning drop-off model, suggesting that the
spatial variation of its influences on morning taxi drop-offs is large. Moreover, the
influence scale of the construction density is quite small except in the Morning drop-
off model. As for different POls, the bandwidth of public management and service
POIs is small in the two evening peak models, indicating that there is significant
spatial heterogeneity during the evening peak hours. In summary, the spatial scales of
influence vary for different factors. Thus, GWR, which assumes that all variables
have the same bandwidth, is biased, and MGWR should be adopted to capture the

spatial variation in influence factors.
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Table 1 Bandwidth calculation results of MGWR

Morning pick- Evening drop- Morning drop- Evening pick-

up model off model off model up model
Residential density (log) 680 682
Employment density (log) 152 54
Share of 200-meter bus 682 682 307 682
coverage in the grid cell
Share of 400-meter subway 682 669 665 424
coverage in the grid cell
Road area ratio for each grid 258 287 680 133
Average housing price (log) 682 682 179 682
# of buildings for each grid 223 70 682 215
(log)
# of stories in buildings for 680 152 664 682
each grid (log)
# of commercial-and- 682 682 682 682
recreational POI (log)
# of manufacturing-and- 531 682 287 682
office POI (log)
# of residence-and-related- 682 682 682 682
facility POI (log)
# of public-management- 682 49 682 56
and-service POI (log)
Intercept 48 70 48 149

Note: (1): # represents the number of this variable; (2):The number in the table denotes how

many nearest neighbors that contribute to the regression results for one unit.

Table 2 shows regression results of the MGWR and OLS models. The median,
maximum, minimum, and standard deviation values of each independent variable’s
local coefficient estimate in MGWR are represented. This study's explanatory
variables have passed the multicollinearity test (shown in Appendix 2) (Montgomery
et al., 2012). The chosen bandwidths of the MGWR are adaptive, and the bi-square

kernel function is adopted.

18



Table 2 Regression results of OLS and MGWR Model

Morning Pick-up

Morning Drop-off

Evening Pick-up

Evening Drop-off

MGWR OLS MGWR OLS MGWR OLS MGWR OLS
Median  St. Coef.  Median St Coef. Median  St. Coef. . St. Coef.
Median
Dev. Dev. Dev. Dev.

Residential density (log) 0.107  0.010 0.109%** 0.120  0.002 0.118%**
Employment density (log) 0385  0.095 0.248%* 0592 0494 0.078**
Share of 200-meter bus coverage in the grid cell 0.160  0.031 0.186***  0.093  0.033 0.132%%** 0.11 0.004  0.086** 0.122  0.005 0.139%**
f;al‘re of 400-meter subway coverage inthe grid 517 0003 0017 0040 0004 0.050%%* 0068 0028 0.108%* 0040 0005  0.022
Road area ratio for each grid 0.131  0.049 0.175%** 0.147  0.011 0.173***  -0.044 0.251 0.165%**  0.122  0.038 0.145%**
Average housing price (log) 0.017  0.002 0.072%** 0.024  0.008 0.094***  -0.007 0.009 0.065** 0.044  0.003 0.102%**
# of buildings for each grid (log) -0.010  0.039 0.014 -0.018  0.059 0.014 -0.255 0.03 -0.015 -0.014  0.069 -0.006
# of stories in buildings for each grid (log) 0.169  0.006 0.228%** 0.076  0.004 0.161***  0.026  0.038 0.181***  0.112  0.052 0.182%**
# of commercial-and-recreational POI (log) 0.077  0.007 0.088***  -0.044 0.004 -0.048 0.116  0.142  0.106** 0.220  0.002 0.207***
# of manufacturing-and-office POI (log) 0.052  0.010 0.076*** 0.047  0.057 0.143***  0.119  0.142 0.376***  0.082  0.003 O.111%**
# of residence-and-related-facility POT (log) 0090 0006  0.038 0021 0005 0007 0149 o 0118 0062  0.004 0.048%*
# of public-management-and-service POI (log) 0.192  0.008 0.189***  0.190  0.006 0.203***  -0.252  0.398 0.025 0.106  0.077 0.136***
Intercept 0.036  0.197 0 0.024  0.233 0 -0.337  0.115 0 0.081 0.183 0
AlCc 306.789 500.897  376.642 574.246  687.383 1130.450 102.794 334.243
R’ 0.926 0.883 0.920 0.869 0.882 0.705 0.948 0.908
Adj. R’ 0.918 0.881 0.910 0.867 0.864 0.700 0.940 0.907
Moran’s [ in residual Contiguity matrix 0.011 0.224%**  0.076* 0.276***  0.024 0.328***  (0.003 0.248%**

Inverse-distance matrix 0.005 0.281%**  (.074* 0.285%** 0.030 (0.322%** 0.001 0.244%**

Note: (1). * p-value < 0.05; ** p-value <0.01; *** p-value <0.001; (2) Dependent variables for four models are number of morning-peak pick-ups (log),

number of morning-peak drop-offs (log), number of evening-peak pick-ups (log) and number of evening-peak drop-offs (log), respectively.
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Table 2 demonstrates that MGWR has a lower AICc value and a higher R? and
adjusted R? than OLS, indicating relatively better goodness of fit (Charlton et al.,
2009). In addition, we calculated the global Moran’s I value of the residuals of each
model to test whether spatial autocorrelation in the residuals exists. The results are
also reported in Table 2. The residuals of the OLS model show a strong spatial
autocorrelation (Moran's I value is significant and positive) regardless of whether the
contiguity matrix or inverse-distance matrix is used, whereas no significant spatial
autocorrelation is observed among residuals of the MGWR model. According to
Finley (2011) and Gu et al. (2019), the spatially autocorrelated residuals may indicate
inaccurate estimates of model parameters. These results further indicate that MGWR
helps to ensure statistical validity and increase prediction precision through locally
fitting the spatial variation of residuals from each spatial process. Therefore, the local
MGWR model is preferred to the global OLS model in estimating the relationships
between different built environment factors and taxi trips at different locations.

In addition, we further implement GWR for four models and compare the
results to MGWR. The GWR results are shown in Appendix 1. The universal
bandwidth for each of the four models (i.e., morning pick-up, morning drop-off,
evening pick-up, and evening drop-off) is 206, 150, 150 and 166, respectively.
Because Table 1 has clearly indicated that the bandwidths of most explanatory
variables are different from each other and should be treated as such in analysis, we
infer that adopting a universal bandwidth will be oversimplistic and lead to biased

estimates. Furthermore, the differences in corrected Akaike information criterion
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(AICc) and R? across OLS, GWR and MGWR models suggest that MGWR achieves
the best model goodness of fit.

Before we proceed to discuss the MGWR model results in detail in section 4.2,
we first briefly present the results of the OLS models, because they can provide
intuitive interpretations on which explanatory variables are statistically significant
(although their coefficient sizes are less relevant as MGWR models will provide a
local coefficient estimate for each geographic unit). The OLS models report the global
effects of the explanatory variables, indicating that six independent variables are
significantly associated with taxi ridership in all four models, including the residential
or employment densities, bus coverage, road network density, average housing price,
the average amount of stories and manufacturing and office facilities. Commercial
and recreational facilities shows no significant relationship with taxi drop-offs in the
morning peak. That may be because most travel during this period is for commuting
purposes. Likewise, residence and related facilities are only positively associated with
evening-peak drop-offs. Parameter estimates for the public-management-and-service
POl is statistically significant and positive, except in the Evening pick-up model,
possibly because most government departments and agencies close before the evening
peaks we defined (5:00-7:00 PM). Subway coverage is statistically significant only in
the Morning taxi drop-off and Evening pick-up model, as people often use taxi to get
from home to subway stations in the morning peak and inversely in the evening peak.
Meanwhile, bus coverage has a substantially positive impact on taxi trip pick-ups and

drop-offs in all four models. In other words, the importance of taxis as a solution to
21



1 first-mile or last-mile problems for bus passengers is higher than that for subway

2 passengers.

4 4.2 Empirical results

5 4.2.1 Spatial pattern of taxi trips

6  Figure 3 displays the spatial distribution of pick-ups and drop-offs of taxi ridership

7  during two peak periods based on the natural breaks (Jenks) classification method.
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8

9 Figure 3 Spatial pattern of taxi trip volumes in grids

10 The amount of taxi trip pick-ups/drop-offs in each grid can also be interpreted

11 as the density of pick-ups/drop-offs as each grid area is equal to 1km?. In the morning,
12 the density of taxi trip pick-ups is generally lower than that of drop-offs, whereas the
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latter is less concentrated. In the evening peak hours, however, the density of taxi trip
pick-ups is roughly equal to that of drop-offs. In addition, taxi drop-off density is
relatively low during the evening rush hour compared to morning.

To further reveal the spatial clustering pattern of taxi trips, we also implement
Hot Spot Analysis. This is a spatial statistic tool for identifying significant spatial
clusters of high and low values, called hot and cold spots, respectively (Ord and Getis
1995; Getis and Ord 2010). Figure 4 displays the mapping results of Hot Spot
Analysis. The taxi pick-ups / drop offs during two peak periods show roughly similar
results, which can be explained in two respects. First, some studies the average travel
distance for taxi trips in Beijing is between 9km~20km (Jiang et al. 2018). That is,
taxis are usually employed for short and medium-distance travel, which can explain
the similarity of Hot Spot Analysis results of pick-ups and drop-offs during two
periods. In addition, compared with auto-dependent Western cities with a comparable
population and land use size, people in Beijing have relatively shorter commuting
distances, which indicates a better job-housing balance within the Beijing
Metropolitan Area (Zhou and Long 2014). Clusters of high-density taxi trips (hot
spots) are concentrated in the northeast central urban area, between the 2nd Ring
Road and the 4th Ring Road during both morning and evening peak hours.
Moreover , most interchange stations like Wangjing station and the Olympic Park
station are hot spots. The clusters of low-density taxi trips (cold spots) exist in two

peaks, which means not only does the grid itself have low-density taxi trips, but the
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taxi ridership in its neighboring grids is also low, primarily distributed at the edge of

the research area.
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Figure 4 Hot Spot Analysis of taxi volumes in grids

4.2.2 Spatial variations of the impact on taxi trips

To reveal the spatial pattern of influence factors on taxi trips, we visualized the
parameter estimates of explanatory variables using ArcGIS 10.7 software with the
Jenks Natural Breaks’ classification method, and colors from blue to red show the
variation of determinants. The spatial patterns of regression coefficients for each
variables are illustrated in Figure 5, note that only significant variables will be

discussed in detail subsequently.

5 It is a classification method based on variance minimization criteria, which can maximize the variance among
different classes (De Smith, Goodchild, and Longley 2017). It has been widely used for local coefficient
visualization (eg., Gu et al. 2021; Sha et al. 2017 and Yang et al. 2019).
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1) Residential and employment densities

The spatial patterns of regression coefficients of residential or employment
densities are different in the four models. As Figure 5 shows, it residential density
has positive impacts on taxi demand during the morning peak in the entire research
area, and the values of its coefficients decrease from north to southeast in the Morning
pick-up model. For the Morning drop-off model (b), the coefficients vary significantly

in space. Larger positive coefficients in the northeastern part of Beijing are observed.
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Meanwhile, strong positive effects of employment density on taxi drop-offs during the
morning peak hour occur in a small area west of the city center. In the evening, higher
positive effects of employment density on taxi trip pick-ups can be observed in the
north-eastern part, which accommodates Beijing’s Central Business District (CBD).
One interesting thing is that the small area west of the city center observes higher
coefficients again. Referring to the hotspot analysis of bus and subway coverage
(Figure 6), we find that this is a blank area for both figures, meaning it has less access
to public transport compared with neighboring areas. Given that taxis are a vital
complement to public transit in China (Hall et al.,2018; Wang and Noland, 2010),
people who work in the vicinity of this gap in bus and subway coverage may rely
heavily on taxis to connect to other transportation modes. Thus, employment density
shows a stronger effect on taxi trips there. For evening-peak drop-offs, the estimates
vary slightly across space, implying that the residential density is more influential in

the west of the city, with the impact decreasing from west to east.

T
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Figure 6 Hot Spot Analysis of bus/ subway coverage

2) Public transportation
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® Share of 200-meter bus coverage in the grid cell

During the morning peak, we find that the local coefficients of the share of bus
coverage area are positive and decrease slightly from center to periphery. That means
an increase in bus coverage in areas around the city center with relatively low bus
coverage may introduce more taxi trips. Increasing bus coverage in these places can
encourage commuters to choose taxi plus bus mode for commuting--taking taxis to
bus stops nearby and then taking buses to work. This could potentially contribute to
reducing private vehicle usage, consequently relieving traffic stress and carbon
emissions in the downtown area. In the Morning drop-off model, the spatial variation
in the local parameter estimates for this variable is stronger, increasing from west to
east. In the Evening pick-ups model, the highest local coefficient of bus coverage
occurs in the northeast, which is related to the increased travel demand in this area.
Bus coverage is still statistically significant for drop-offs and associated with more
drop-offs during the evening peak hours, with the high coefficients concentrated in

the southeast.

® Share of 400-meter subway coverage in the grid cell

According to the results, subway coverage shows a significantly positive
association with taxi morning peak drop-offs and evening peak pick-ups. As shown in
figure 5, the spatial pattern of its local estimated coefficients illustrates a pattern
similar to the bus coverage pattern in the morning peak models. In the evening peak
periods, an increase in subway coverage is likely to be associated with more taxi
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ridership in the eastern part of the city, while this positive effect is relatively weaker

in the west.

3) Road network density

According to the estimation results, local road density is positively associated
with both pick-ups and drop-offs, decreasing from south to north in the morning peak
hours. Figure 7 shows that the local road network density in Beijing increases from
south to north. That is, the rise of road density in southern areas with fewer roads is
positively associated with the amount of taxi trips, which may suggest the current
density of roads is insufficient to meet travel demand. The evening pick-up model
shows a different spatial pattern of coefficients for road density compared with the
morning pick-up model. There is a high clustering of area during the evening peak
with high positive cumulative estimates in the north. This difference may could be
explained by different travel purposes. Research points out that areas with high road
density attract more people living and working, so that generates more travel demand
(Tang et al. 2019). The employment density in the northern part of our study area is
much higher than the southern part, therefore the positive impact of road density is
quite obvious in the north, while no significant effect of it can be found in the south.
In the Evening drop-off model, road density still shows a positive impact in units with
a large number of taxi drop-offs. The spatial distribution of its coefficient is consistent

with that in the morning.
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Figure 7 Spatial pattern of the road area ratio

4) Average housing price

The estimates of average housing prices in the Morning pick-up model vary
slightly across the research area. According to Table 1, this factor has positive
impacts on taxi demand in general. Moreover, this influence weakens from southeast
to northwest, perhaps because of the higher price sensitivity for low-income groups as
taxis are relatively costly compared with other travel modes (the starting price of taxis,
buses, and subways in 2016 being ¥ 13 yuan, ¥ 2 yuan, and ¥ 3 yuan respectively).
For drop-offs during the morning peak, the spatial variation in its estimates is stronger.
The positive coefficient in the northern area, which concentrates lots of upscale
residential neighborhoods, is smaller than that in the southern part. The spatial
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distributions for the coefficients of average housing price in the Evening pick-up and
drop-off models are broadly similar, with the values decreasing from south to north.
5) Land development intensity
® Average number of stories of buildings

During the morning peak, the average number of stories of buildings shows a
positive effect on taxi trip pick-ups, increasing slightly from southwest to northeast.
For drop-offs, its local coefficients rise from the city center to the surrounding area.
Meanwhile, the eastern part has the highest coefficients, indicating that high-rise
buildings such as office towers and apartment blocks in the central area with intensive
development have fewer effects on taxi trips during the morning peak. In contrast,
such effects are more decisive in less intensively developed areas. In the Evening
pick-up model, an increase in high-rising buildings is correlated with more taxi
demand in the east. Nevertheless, its highest positive coefficients appear in the
northwest corner, and the coefficients for central downtown are lower and even
negative in the Evening drop-off model. Specifically, the eastern part of our research
area has a concentration of many tall office towers and condos (see figure 8), which is
more likely to generate taxi trips for commuting in the morning than areas with lower
buildings. As for the different results of the Evening drop-off model, this may be

related to more diverse travel purposes after work (e.g., entertainment, dining and

shopping).
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6) Different categories of amenities

Our results show that taxi trips during the two peak periods are significantly
associated with most categories of POI. The spatial patterns of various POIs’
estimated coefficients are considerably different, giving us insights into the detailed
association between different amenities and taxi trips in different areas within the city.
For example, the manufacturing-and-office POI shows strong positive and significant
coefficients in four models. The Morning pick-up model's local coefficients decline
from west to east, similar to the Evening drop-off models. By comparison, the
positive effects of manufacturing and office POIs exhibit an increasing trend from the
northeast part to the southwest part, and the clusterings of areas with the lowest

estimates cover the central area. The cause of this phenomenon may be related to the
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unique political position of central Beijing: a large number of people who work there
are government officers with less taxi dependence, while commuters in the northern
area are usually medium or high-income groups, with a higher probability of taking

taxis.

5. Conclusions

Although a large body of empirical studies has been conducted on the effects of the
built environment on travel behavior (Ewing and Cervero 2010), little attention has
been given to the spatial heterogeneity of these effects. Only a few studies have
specifically investigated the spatially heterogeneous effects of the built environment
on taxi ridership (Liu et al. 2020; Qian and Ukkusuri 2015; Wang and Noland 2021).
However, they have ignored the varying scales for impacts of different factors on taxi
trips. This study fills this gap and examines such heterogeneity using a full sample of
taxi trips during morning and evening peak hours in April 2015. We adopt the
MGWR local model to reveal detailed spatial variation in the determinants of taxi
ridership. The results can help policymakers better understand the spatial patterns of
taxi trips and their relationship with urban built environmental characteristics. This
can help policymakers to develop more contextualized policies, and may be
particularly valuable for allocating taxi reception zones and transportation planning.
We first use Hot Spot Analysis to analyze the spatial- clustering pattern of taxi
ridership. A spatially concentrated pattern of taxi ridership during two peak hours can

be observed. Specifically, clusters of high-density taxi trips (hot spots) are
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concentrated in Beijing's northeast central urban area, and clusters of low-density taxi
trips (cold spots) are distributed at the edge. Then the global model suggests that the
residential/employment density, bus coverage, local road network density, average
housing price, high-rise buildings and the manufacturing-and-office POI positively
affect taxi trip pick-ups and drop-offs during both peak periods. In addition, subway
coverage only has a statistically significant coefficient estimate in the Morning drop-
off model and the Evening pick-up model. This provides further evidence that
commuters take taxis to subway stations for commuting, implying that taxis can
complement the public transit system by serving as a feeder mode.

The MGWR model provides a deeper understanding of the spatial
heterogeneity in the impact of built environment characteristics on taxi ridership. First,
spatial heterogeneity exists in the distributions of parameter estimation of each
independent variable. For example, the positive estimated coefficients of residential
density decrease from north to southeast during the morning peak, whereas bus
coverage increases from the center to the periphery. Second, we find that residential
density has a more profound effect on taxi demand in places with limited public
transit access. Third, the positive impact of public transit on taxi demand follows the
law of diminishing returns, which may suggest that improving the bus coverage in the
outskirts, where there is less bus coverage, can encourage more commuters to take
taxis to bus stops nearby and then take the bus to work. This may be able to reduce
private vehicle usage and reduce traffic stress and carbon emissions in the downtown

area. The results also reveal that an increase in road density is possibly related to more
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taxi demand in the southern area with less road density than in the northern parts with
a dense road network. This phenomenon implies that the current road facilities cannot
meet the public travel demand there. In addition, we find that the unique urban layout
of Beijing, where the central part possesses crucial political function, needs to be
considered in relevant research. According to our findings, we recommend that the
relevant departments pay enough attention to the spatial non-stationarity in the
determinants of taxi ridership’ distribution. Moreover, the construction of the public
transit system should be improved in suburban areas with less public transit coverage,
which may effectively decrease the public demand for private cars and reduce inner-
city congestion. Planning should also take into account the need for taxi services to
complement these extensions of public transit, in order to serve first and last-mile
needs. In addition, building-height restrictions in Beijing metropolitan area should be
reconsidered, which may contribute to low-density suburbanization and increase
residents’ commuting costs, but provide relatively minor benefits to the service level
of the urban transportation system.

Several limitations remain in this study. One is that the results of this paper are
based on a 2015 Beijing dataset. Analysis using more recent data sources and data
from other cities of different scales to confirm the findings of this study would be an
important direction for future research. Furthermore, while this study addresses spatial
heterogeneity, temporal heterogeneity may also exist. This is also an area that requires
further study. There is a large scope for developing our work in the future. First, if

more data are available, such as taxis trip lengths, vehicle ownership, and bikeshare
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ridership, we are allowed to examine the complex substitute and complementary
relationships among different travel modes, which has important implications for
reductions in both traffic congestion and greenhouse gas emissions. Besides, further
research should investigate the causal mechanisms between the built environment
characteristics and travel behavior through a more valid research design, such as
combining with the qualitative research and longitudinal data collection. That will
help to unravel more complexities in the impact of the built environment on travel

behavior.
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Appendix 2 VIF test results

Morning peak
taxi pick-ups

Morning peak
taxi drop-offs

Evening peak
taxi pick-ups

Evening peak
taxi drop-offs

Employment density
(log)

4.09

4.09

Residential density
(log)

3.27

3.27

Average housing
price (log)

1.53

1.59

1.59

1.53

Share of 200-meter
bus coverage in the
grid cell

2.57

2.58

2.58

2.57

Share of 400-meter
subway coverage in
the grid cell

1.44

1.44

1.44

1.44

Road area ratio for
each grid

1.96

1.94

1.94

1.93

# of buildings for
each grid (log)

2.58

2.54

2.54

2.58

# of stories in
buildings for each

grid (log)

3.04

3.00

3.00

3.04

# of commercial-and-
recreational POI

(log)

5.25

5.22

5.22

5.25

# of manufacturing-
and-office POI (log)

1.93

2.70

2.93

2.36

# of residence-and-
related-facility POI

(log)

543

5.25

5.25

543

# of public-
management-and-
service POI (log)

5.70

5.68

5.68

5.70

Mean VIF

3.19

3.28

3.28

3.19

Note: # represents the number of this variable.



Appendix 3 Regression results of GWR Model

(a) Morning Pick-up Model

Morning Pick-up Model

Dependent variable: Number of
morning-peak pick-ups (log)

Median Min Max St. Dev.
Residential density (log) 0.128 -0.001 0.332 0.068
Share of 200-meter bus coverage in the 0.156 0.048 0.3 0.051
erid cell
Share of 400-meter subway coverage in  0.01 -0.048 0.116 0.033
the grid cell
Road area ratio for each grid 0.148 0.059 0.389 0.082
Average housing price (log) 0.038 -0.06 0.162 0.047
# of buildings for each grid (log) 0.002 -0.193 0.087 0.058
# of stories in buildings for each grid 0.198 -0.001 0.297 0.071
(log)
# of commercial-and-recreational POI  0.059 -0.149 0.269 0.079
(log)
# of manufacturing-and-office POI 0.043 -0.038 0.217 0.065
(log)
# of residence-and-related-facility POI  0.071 -0.106 0.259 0.072
(log)
# of public-management-and-service 0.219 -0.064 0.571 0.111
POI (log)
Intercept 0.047 -0.154 0.475 0.144
Bandwidth 206
AlCc 396.421
R 0.924
Adj. R? 0.912
(b) Morning Drop-off Model
Morning Drop-off Model
Dependent variable: Number of
Evening-peak Drop-offs (log)
Median Min Max St. Dev.
Employment density (log) 0.369 0.029 0.93 0.211
Share of 200-meter bus coverage in 0.1 -0.083 0.207 0.059
the grid cell
Share of 400-meter subway coverage 0.047 -0.056 0.161 0.048
in the grid cell
Road area ratio for each grid 0.152 0.009 0.346 0.072
Average housing price (log) 0.044 -0.159 0.2 0.08
# of buildings for each grid (log) -0.033 -0.277 0.133 0.085
# of stories in buildings for each grid 0.081 -0.108 0.246 0.061
(log)
# of commercial-and-recreational -0.046 -0.342 0.083 0.095
POI (log)
# of manufacturing-and-office POI 0.084 -0.088 0.337 0.095
(log)
# of residence-and-related-facility -0.004 -0.311 0.275 0.124
POI (log)
# of public-management-and-service 0.222 -0.026 0.612 0.114
POI (log)
Intercept 0.087 -0.203 0.627 0.161
Bandwidth 150
AlCc 475.122
R’ 0.926



Adj. R’ 0.909

(¢) Evening Pick-up Model

Evening Pick-up Model

Dependent variable: Number of GWR
morning-peak pick-ups (log)

Median Min Max St. Dev.
Employment density (log) 0.237 0.035 0.902 0.159
Share of 200-meter bus coverage in 0.141 -0.024 0.249 0.061
the grid cell
Share of 400-meter subway coverage  0.027 -0.059 0.141 0.038
in the grid cell
Road area ratio for each grid 0.146 0.017 0.401 0.087
Average housing price (log) 0.041 -0.114 0.177 0.068
# of buildings for each grid (log) -0.02 -0.227 0.144 0.082
# of stories in buildings for each grid ~ 0.078 -0.08 0.224 0.066
(log)
# of commercial-and-recreational POI ~ 0.135 -0.133 0.278 0.079
(log)
# of manufacturing-and-office POI 0.119 -0.036 0.281 0.07
(log)
# of residence-and-related-facility POI  0.001 -0.222 0.216 0.097
(log)
# of public-management-and-service 0.126 -0.164 0.396 0.116
POI (log)
Intercept 0.06 -0.17 0.666 0.183
Bandwidth 150
AlCc 270.966
R 0.945
Adj. R? 0.932
(d) Evening Drop-off Model

Evening Drop-off Model
Dependent variable: Number of GWR
Evening-peak Drop-offs (log)
Median Min Max St. Dew.
Residential density (log) 0.134 -0.117 0.387 0.1
Share of 200-meter bus coverage in 0.114 -0.025 0.198 0.041
the grid cell
Share of 400-meter subway coverage 0.033 -0.023 0.094 0.027
in the grid cell
Road area ratio for each grid 0.121 0.037 0.286 0.067
Average housing price (log) 0.041 -0.098 0.197 0.06
# of buildings for each grid (log) 0.121 0.037 0.286 0.067
# of stories in buildings for each grid -0.014 -0.277 0.12 0.068
(log)
# of commercial-and-recreational
POI (log) 0.220 0216 0.223 0.002
# of manufacturing-and-office POI 0.082 0.079 0.089 0.003
(log) . . . .
ﬁgf residence-and-related-facility 0.062 0056 0.070 0.004
(log)

# of public-management-and-service 0106 20220 0287 0077
POI (log) ) ’ ) )
Intercept 0.035 -0.18 0.606 0.168
Bandwith 166

AlCc 254.677




R’ 0.944
Adj. R’ 0.932

Note: (1) Note: # represents the number of this variable; (2) * p-value < 0.05; ** p-value <0.01; *** p-

value <0.001
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