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HIGHLIGHTS

o The psychological restoration was evaluated through two different types of graphs at the street and city levels.

o Using sequential Street View Images to characterize urban spatial structure and explore its relationship to restoration.
o Spatial-dependent Graph Neural Network outperformed traditional models in model prediction.

o Spatial structure (street-level graphs) makes a significant contribution to the prediction of psychological restoration.

ARTICLE INFO ABSTRACT
Keywords: The Attention Restoration Theory (ART) proposed four essential indicators (being away, extent, fascinating, and
Restoration compatibility) for understanding urban and natural restoration quality. However, previous studies have over-
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looked the impact of spatial structure (the visual relationships between scene entities) and neighboring envi-
ronments on restoration quality as they mostly relied on isolated questionnaires or images. This study introduces
a spatial-dependent graph neural networks (GNNs) approach to address this gap and explore the relationship
between spatial structure and restoration quality at a city scale. Two types of graphs were constructed: street-
level graphs using sequential street view images (SVIs) to capture visual relationships between entities and
represent spatial structure, and city-level graphs modeling the topological relationships of roads to capture the
spatial features of neighboring entities, integrating perceptual, spatial, and socioeconomic features to measure
restoration quality. The results demonstrated that spatial-dependent GNNs outperform traditional models,
achieving an accuracy (Acc) of 0.742 and an F1 score of 0.740, indicating their exceptional ability to capture
features of adjacent spaces. Ablation experiments further revealed the substantial positive impact of spatial
structure features on the predictive performance for restoration quality. Moreover, the study highlighted the
greater significance of naturally relevant entities (e.g., trees) compared to artificial entities (e.g., buildings) in
relation to high restoration quality. This study clarifies the association between spatial structure and restoration
quality, providing a new perspective to improve urban well-being in the future.

1. Introduction environment on human health, particularly in promoting physical
health, managing stress, and preventing stress-related diseases (Akpinar,
The urban landscape, home to over half the world’s population, is in 2021; Cetin et al., 2021; Liu et al., 2020). Improving the urban built

a state of flux and is predicted to accommodate 75 % of the global environment emerges as a broad-based solution, recognized for its po-
populace by 2050 (Ritchie and Roser, 2018). This rapid urbanization tential to address these mental health issues (UNFPA, 2007; Keniger
necessitates a focus on mitigating the adverse impacts of the urban et al., 2013; Hough, 2014).
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Meanwhile, exposure to forests and green spaces has been confirmed
to benefit human mental health, effectively reducing stress (Capaldi
et al., 2014), improves mood (Berman et al., 2008), and restoring
depleted cognitive resources (Akpinar, 2021; Liu et al., 2020), as sup-
ported by the Attention Restoration Theory (ART) (Kaplan, 1995; Hartig
et al.,, 1991). However, previous empirical studies often relied on iso-
lated questionnaire survey or single images as assessment methods and
data resources (Burmil et al., 1999; Lindal and Hartig, 2013). Such ap-
proaches fail to consider the influence of spatial structure (i.e., con-
nections within the scene) and geographic relevance (i.e., impacts
outside the scene) on restorative quality. Consequently, the conclusions
and empirical evidence from these studies may be limited and isolated.
Thus, it is crucial to investigate these impacts to gain a comprehensive
understanding of restorative environments.

Spatial structure, understood as the visual relationship between
physical entities, has been linked to the layout of streets (Ashihara,
1986), landscape design (Cullen, 2012), and land use function (Zube,
1987), which in turn impact human perception (Lynch, 1984). Just as
the first law of geography stated: “Everything is related to everything
else, but near things are more related than distant things” (Tobler,
1970). Spatial structure therefore involves complicated interrelation-
ships between these elements and their different forms could have
entirely different outcomes or impacts. For example, Celikors and Wells
(2022) showed that two images with similar visual elements could elicit
different degrees of psychological restoration due to changes in their
spatial structures. Although revealing the effects of spatial structures on
psychological restoration can potentially enrich space interpretability,
the rich and fine differences in spatial structures have been difficult to
measure in earlier modeling work.

Street View images (SVIs) provide a valuable opportunity to capture
spatial structure information from a human perspective. These images
have high spatial resolution and provide sequential data (interval of 50
m) with rich urban information, which has been widely used in the study
of urban form (Gong et al., 2019; Ito and Biljecki, 2021), visual
perception (Biljecki and Ito, 2021), and health behavior (Fan et al.,
2023; Rzotkiewicz et al., 2018). Meanwhile, using such data to assess
urban restoration quality has also garnered increasing attention. Some
studies have explored the potential of SVIs to predict urban restoration
quality at the city level, demonstrating efficiency and accuracy (Han
et al.,2023; Ma et al.,2023). Moreover, the sequential nature of these
images provides opportunities to explore the intrinsic connections of
spatial entities within street units (Zhang et al.,2023; Liang et al.,2023).

In recent years, methodological breakthroughs such as machine
learning approaches have been broadly applied in urban studies. Among
them, graph neural networks (GNNs) have shown significant advantages
in capturing extrinsic relationships and predicting attributes in various
fields, including traffic flow, urban population movement, and social
perception (Liu and Biljecki, 2022; Zhang et al., 2023). Built upon these
applications, our research aims to leverage on this approach and use
graphs to represent urban spatial structures and assess their restoration
quality. Specifically, we proposed a spatial-dependent GNNs approach
to reveal the relation between spatial structure and restoration quality at
a city scale. This approach involves two distinct types of graphs: the
street-level graph and city-level graph. The street-level graphs capture
visual relationships between entities, specifically the spatial structure,
using sequential street view images within road units. In contrast, the
city-level graph integrated urban variables, including socioeconomic,
perceptual, and spatial features, to measure restoration quality, taking
into account the surrounding environments. To the best of our knowl-
edge, our proposed method of evaluating urban restoration quality and
revealing the impact of spatial structure is groundbreaking.

The present study contributes significantly to the research landscape
in three key ways:

e We proposed a spatial-dependent GNN method that effectively
predicted the restoration quality on a city-level graph by capturing the
neighboring space features.
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e We verified the effect of spatial structure on the restoration quality
of urban space and explored the internal spatial structure of different
quality restoration spaces based on street-level graphs.

e We discovered that naturally related entities (e.g., trees) are more
important than artificial entities (e.g., buildings) in the spatial structure
of high-restoration quality space.

2. Related works
2.1. Restorative quality in urban environments

Attention Restoration Theory (ART) provided a framework for un-
derstanding the mental health benefits of environmental interactions.
The psychological recovery and improvement of cognitive functioning
after mental fatigue were referred to as Restoration in ART
(Kaplan,1995). According to Kaplan and Kaplan (1989), to restore
cognitive resources, the environment should possess the qualities of
Being Away, Extent, Fascination, and Compatibility. Being away
allowed us to distance ourselves from the routine fatigue of daily life.
Extent refers to the expansiveness of the environment and the degree to
which it invites exploration. Fascination is characterized by an envi-
ronment’s ability to attract our interest without consuming our atten-
tional resources. Compatibility is the degree of alignment between an
individual’s needs or preferences and the environment’s characteristics.

The advantages of interacting with natural environments were
evident, such as reducing anxiety (Felsten, 2009), alleviating stress
(Capaldi et al., 2014), improving mood (Berman et al., 2008), and
performance in tasks requiring attention and working memory (Bratman
et al.,2015; Stenfors et al.,2019). However, previous studies have
focused primarily on the restorative benefits of natural environments
and often compare them with urban environments (Hartig et al., 1991;
Ulrich et al., 1991). Urban environments, on the other hand, were
generally believed to deplete mental and attentional resources (Kaplan
and Berman,2010; Schertz and Berman,2019). Such categorization can
exacerbate the perceived contrast between “natural” and “urban” en-
vironments. Yet, urban elements such as green-blue spaces (Li et al.,
2023) and walkable spaces (Han et al., 2023) have been associated with
mental restoration. Some urban locations also possess restoration po-
tential, such as art galleries (Clow and Fredhoi,2006), shopping centers,
and cafes (Staats et al.,2016). However, these studies often treat urban
environments as a homogeneous category, overlooking the variations in
spatial structure and geographical relevance (Velarde et al.,2007).

Spatial elements can have different meanings in different contexts,
and changes in spatial patterns result in variations in spatial structures.
Historical studies and theories have suggested an association between
human psychological perceptions and urban spatial structures
(Lynch,1984; Ashihara,1986; Zube,1987). However, there is no docu-
mented evidence of a direct correlation between psychological restora-
tion and spatial structures. Celikors and Wells (2022) proposed that
similar visual properties could elicit different restoration judgments due
to inherent spatial representation, highlighting the need for further
investigation. Moreover, the lived experiences of city dwellers, which
are shaped by the physical environment and are continuous, should be
taken into account as the city is a spatial continuum and a system (Nordh
et al.,2009; Lindal and Hartig,2013). Previous research often relied on
non-sequential, non-geotagged data (Han et al.,2023; Ma et al., 2023),
but similar and close things are more relevant in urban space, according
to the first law of geography (Tobler, 1970). Thus, it’s essential to
consider both spatial structures and geographical relevance on an urban
scale. However, traditional methods are often constrained by time and
costs, focusing on specific locations and utilizing small sample sizes
(Nordh et al.,2009; Lindal and Hartig,2013). This necessitates proposing
a new research framework and data source.
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2.2. Street view imagery in urban studies

In recent years, crowd-sourced data have been widely applied in
urban studies, such as Street View Images (SVIs) (Biljecki and Ito, 2021).
It contains rich urban information and is extensively used to extract
environmental features (Tang and Long,2019; Wang et al., 2022; Zhou
et al.,2019), build urban knowledge graphs (Zhang et al.,2023), analyze
environmental health (Rzotkiewicz et al., 2018), and predict humans’
perception (Zhang et al., 2018; Zhao et al., 2023). Zhang et al. (2018)
pioneered the concept of establishing connections between SVIs and six
human perceptions (namely, beautiful, boring, lively, depressing,
wealthy, and safety) by calculating the visual perception of urban fea-
tures through semantic segmentation. Subsequent research has
confirmed the accuracy of this data in predicting perceptions of safety
(Kang et al., 2023). Additionally, with the development of computer
vision, such as image classification (Hu et al., 2020), semantic seg-
mentation (Lauko et al.,2020), and object detection (Zhao et al.,2023), it
has become efficient in analyzing large-scale SVIs to investigate urban
issues. S1 Appendix, Table S1 shows the number of papers on different
topics using street view images.

Moreover, SVIs have a sequential attribute and high spatial resolu-
tion, allowing researchers to study perceptual variations in cities on a
large scale, in detail, and over time. For instance, Zhang et al. (2023)
employed language information extracted from SVIs to capture the
intrinsic and extrinsic relationship between scene entities to predict
urban land functions. However, there have not been many cases in
which data are used to evaluate the quality of urban restoration. In a
recent study, Han et al. (2023) pioneered the exploration of a large-scale
urban restoration quality assessment framework via 1,250 SVIs,
achieving accurate results. Ma et al. (2023) also employed SVIs to
explore the relationship between visual features and restoration quality
on a campus scale. Table 1 summarizes 10 papers and methods that use
street view to assess restoration quality. However, a significant limita-
tion is that they only deal with non-sequential images (single images),
which means that the relationship between scene entities on a road
segment cannot be captured. Therefore, it is important to uncover the
value of sequential attributes of SVIs, which entity relationships be-
tween streetscapes, represent spatial structures, and can further explore
their relationship to restorative perception.

2.3. Spatially dependent graph neural networks

Graph Neural Networks (GNNs) have been shown to outperform
traditional models in several areas, such as traffic flow prediction, urban
population mobility, and social sensing (Liu and Biljecki, 2022). They
are capable of handling structured non-Euclidean data, extracting
spatial features from graphs for efficient learning (Zhang et al., 2021;
Yao et al., 2021), and capturing the spatial dependency and heteroge-
neity of urban features (Liu et al., 2023; Liang et al., 2023). According to
the first law of geography, city regions within a specific range may

Landscape and Urban Planning 251 (2024) 105171

become increasingly similar due to the strong correlation between urban
scenes and their neighboring areas (Tobler, 1970). Previous studies have
found that the spatial relationship between neighbors, represented by
graph theory, can identify high-level features. Zhang et al. (2023) con-
structed a city knowledge graph containing urban geographic informa-
tion using SVIs and verified the feasibility and accuracy of GNNs in
representing urban spatial structures.

GNNs can learn the deep representation of spatial relationships be-
tween adjacent scenes through aggregation algorithms, where each
node can aggregate features from its neighbors (Defferrard et al., 2016).
Based on the foundational principles of GNNs, several derived models
have been developed, such as Graph Isomorphism Network (GIN) (Xu
et al., 2019), Graph Convolutional Networks (GCN) (Kipf and Welling,
2016), Graph Attention Networks (GAT) (Velickovic et al., 2017), and
SAGE (Hamilton et al., 2017). Thanks to the powerful data organization
capability and the ability to handle non-Euclidean data structures, GNNs
can integrate various modalities of urban data into graph neural net-
works for downstream tasks. Examples of such data include SVIs (Liu
et al., 2023), Points of Interest (POI) (Xu et al., 2022), land use (Liang
et al., 2023), and social media data (Liu and De Sabbata, 2021),
achieving state-of-the-art performance. For instance, Xu et al. (2022)
combined visual features of cities with POI data for urban scene classi-
fication, improving the precision by 13 % compared to traditional
methods. Although GNNs have the powerful ability to handle various
urban tasks, there has been no research applying them to the study of the
quality of urban restoration. Thus, our study is pioneering.

3. Methods and data

In this study, we proposed a graph-based framework to identify
where had the highest or lowest restoration potential on city road units
and explore what are the most important features that contributed to
psychological restoration in the urban graph. The research framework
consists of five parts (Fig. 1): 1) extracting features and embedding
spatial structure (i.e., it constructed at the street level); 2) aggregating
the potential urban features into a city-level graph, which was created
based on OpenStreetMap (OSM); 3) labeling and enhancing dataset; 4)
training and evaluating different types of classification models; and 5)
conducting an overall analysis. This section will provide a detailed
introduction to parts 1-4, and part 5 will be analyzed in the results
section.

Our research area is within the third ring road of Wuhan (S1 Ap-
pendix, Fig. S1), a large city with a population of 11.21 million in Hubei
province, which serves as a representative sample of the central region
of China. For this study, we collected the OpenStreetMap (OSM) road
network consisting of 5,075 road segments, and 64,750 panoramic SVIs
sampling locations at 50-meter intervals were collected via Baidu Maps
API from July 2022 to June 2023.

Table 1

Statistics of applied methods of street view image in restoration quality research.
Number Methods Research article

Visual proportion Object detection Scene category Visual feature Spatial structure other

1 v (Han et al., 2023)
2 \/ (Guo et al., 2023)
3 v v v (Ma et al., 2023)
4 v (Wu et al., 2024)
5 \/ \/ (Chen et al., 2022)
6 \/ (Zhao et al., 2020)
7 v v (Yin et al., 2022)
8 v (Helbich et al., 2021)
9 \/ (Meng et al., 2023)
10 Vv (Hao et al., 2024)

Note: The symbol “x” indicates that not used, and “4/” means the method is used.
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Fig. 1. Research framework. Our research consisted 5 parts: 1) extracting urban features related to psychology restoration, including socioeconomic, perceptional,
and spatial features; 2) constructing a city-level graph by aggregating urban features into road units as nodes and road topology as edges; 3) labeling nodes by using
the PRS-11questionnaire to score and label each road unit; 4) training the model and making prediction by treating the city-level graph as input to predict urban
restoration quality through GNNs-based models; and 5) conducting an overall analysis, which including evaluating model performance, examining spatial distri-

bution, and spatial structure of restoration quality.

3.1. Extracting features and embedding spatial structure

Our study categorized urban features into three types derived from
various sources of urban data sources: 1) perceptual features (i.e., SVIs
were used to infer human perception, which included object quantity,
semantic proportion, and perceptual scores), 2) spatial features (i.e.,
SVIs were utilized to construct street-level graphs and obtain these
embedded features), and 3) socioeconomic features (i.e., calculated
from POI and housing prices). S1 Appendix, Table S2 shows the sum-
mary statistics for all variables.

Perceptual features. Urban space quality evaluations often extract
physical components from SVIs, such as enclosure, greenery, openness,
and safety (Tang and Long, 2019; Zhou et al., 2019). Previous studies
have indicated that shallow visual features (i.e., pixel level) and deep
visual features (i.e., semantic and object level) of images can affect
perceptions of attention restoration (Ibarra et al., 2017; Celikors and
Wells, 2022; Valtchanov and Ellard, 2015). We used OpenCV to calcu-
late the pixel-level information of street view images (Zhao et al., 2023).
For the extraction of deep visual features, including semantic segmen-
tation at the semantic level to compute the proportion of physical ele-
ments and object detection at the object level to calculate the number of
entities, we employed MaskFomer (Cheng et al., 2021) and DETR
(Carion et al., 2020). MaskFomer is capable of segmenting 150 object
categories, and DETR can detect 90 object categories, which have state-
of-the-art performance. We used these models to extract visual features
from SVIs.

Perceptions of cities also have an impact on the restoration of
attention. More aesthetically appealing places tend to be more attrac-
tive, aligning with Kaplan’s concept of a fascinating space that can
restore attention resources (Berman et al., 2008). For the evaluation of
perceptual scores, we used the Place Pulse 2.0 dataset, which includes

110,988 images from 56 cities in 28 countries, with six labels:
depressing, boring, beautiful, safe, lively, and wealthy (Dubey et al.,
2016). Based on examining its initial version, no significant cultural or
individual preference biases were found, indicating its feasibility in
global research (Salesses et al., 2013). We used a pre-trained model
provided by Yao et al. (2019) to predict the perceptual scores of 64,750
SVIs in Wuhan City. Table 2 summarizes the models and algorithms used
for feature extraction, and the dimension of all perception features is
D = 251.

Spatial features (street-level graph). The spatial relationships
between entities exhibit both intrinsic and extrinsic associations,
resulting in a strong geographic relevance between similar elements in
different urban spaces (Kang et al., 2018; Zhang et al., 2023). To
effectively capture the structural relationships within urban scenes, we
utilized sequential street views encompassed within each road unit (i.e.,
road segments). This approach enables us to capture and establish re-
lationships between images, for example, identifying the same buildings
in adjacent street views.

As shown in Fig. 2, we first created a spatial graph of urban scene
entities. A panoptic segmentation model named Mask2Fomer (Cheng

et al., 2022) was employed to capture the semantic and object urban
Table 2
Summary of feature extraction models and algorithms.
Features Model Dataset Variables
Pixel-level OpenCV - 5 categories
Object-level DETR (Carion et al., 2020) COCO 2017 90 categories
Semantic- MaskFomer (Cheng et al., ADE20K 150
level 2021) categories
Perception ResNet (Yao et al., 2019) Place Pulse 6 categories

2.0
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Fig. 2. Embedding the spatial structure. First, a spatial graph of entities was constructed by inferring the adjacency relationships between pixels of the entities.
Second, cross-graph links were established by calculating the cosine similarity between corresponding entities (i.e., same category) in two graphs. ResNet-18 was
employed for entity embedding. Finally, treating roads as the smallest units, GCN was utilized to transform the street structure into vectors.

features, which model trained on the Cityscape dataset including 19
urban-related categories. Compared to traditional segmentation models,
Mask2Fomer had an ability to not only identify the instance features but
label a different ID for each object. This means that we can easily
calculate the relationships between entities by judging the adjacent
pixels. Based on these results, we construct an undirected graph G = (V,
E) with K nodes, where V represents the set of nodes and E represents the
set of edges. Specifically, for each node categories i, we identify the pixel
edges of nodes with predicted categories as K;. We then expand these
pixel edges around two pixels and check if there is an overlap between
the pixel edges of any two nodes. If there is an overlap or inclusion, we
consider the nodes to be adjacent and add an edge (K;, K;) to the edge set
E;j, indicating the adjacency between node K; and node K;. In the end,
we acquired a spatial graph of urban entities for each SVI.

Next, sequential street view images from the same street were inte-
grated to represent the spatial structure of the smallest units (road
segments). Specifically, we used the ResNet-18 model (He et al., 2016)
to calculate the node similarity in the same categories for each spatial
graph in the same spatial unit. Each node will be embedded into a 1000-
dimensional tensor, and then the cosine similarity between nodes of the
same category will be calculated. If the similarity between two nodes in
two graphs is higher than 0.80, these nodes will serve as bridges to
connect the two graphs. Even though a building was detected in adjacent
sequential street views (i.e., it had three or more segmentations), there
was always a connection to the next one representing one building en-
tity. Additionally, each integrated graph was embedded in a multi-
dimensional vector (D = 32) using the GCN, representing the spatial
structure of each road unit. The GCN utilized a two-layer convolution
approach with hidden layer sizes of 128 computational units. The code is
shared on GitHub.

Socioeconomic features. In addition, we used POI data to examine
service indicators and housing price data to examine the economic
conditions of each road unit, these features have been proven to be
related to the quality of environmental restoration (Subiza-Pérez et al.,
2021; Samus et al., 2022; Luttik, 2000). Specifically, the POI data in-
cludes 23 types of functions, ranging from finance service to motorcycle
service, which can be found in S1 Appendix, Table S1. We collected
these data in June 2023 and used the Spatial Join tool to calculate the
average POI density of each type and the average housing price (in yuan
per square meter) in each road unit (i.e., the average value of a buffer
zone based on the road centerline with a radius of 25 m). The dimension

1 https://github.com/MMHHRR/Restoration_Topology.

of these features is D = 24.

3.2. Features aggregation and graph construction (city-level graph)

The study area consists of 5,075 OSM road units, with the midpoint
of each road serving as a node (N = 5,075) on the undirected graph, due
to the road network shapes urban functions and traffic as the skeleton of
the city (Hong and Yao, 2019). We aggregate the urban features
mentioned in section 3.1 into the road units, and based on the road
centerline, we created a buffer zone with a radius of 25 m, which can
cover most of the urban road width. The Spatial Join tool was used to
map the perceptual feature (D = 251), spatial features (D = 32), and
socioeconomic features (D = 24) to the proper road units. The vector
dimension of each road unit is D = 310.

Simultaneously, we employ the topology of the road network to
create a spatial weight matrix, representing relationships between
adjacent roads. Specifically, we use a matrix n x n (n is the number of all
road segments), and A to express the adjacency relationships between
the roads. If there is an adjacency relationship between streetsiand j, A;;
is assigned a value of one; otherwise, A;; is assigned a value of zero. We
determine the road connection using the K-Nearest method (K=5),
which signifies their adjacency relationships (i.e., 25,375 neighboring
relationships). This method prevents dangling roads but may also
categorize certain non-intersecting roads as nearby (Zhu et al., 2020).

3.3. Labeling and enhancing dataset

In this section, a graph-based dataset was created specifically for
predicting the quality of urban restoration. The restoration quality
prediction task was formalized as a three-class classification at a city-
level graph, where each node represented a road. The restoration
quality categories were labeled as high, medium, or low. In addition, to
label the restoration quality categories for each road (i.e., node), we
evaluated a substantial number of SVI samples using the Perceived
Restorativeness Scale-11 (PRS-11) on a platform we developed. A total
of 1,115 roads were labeled, with 80 % allocated for training and the
remaining 20 % used as the test dataset (Table 3). Additional details on
the sampling process can be found in S1 Appendix, Fig. S2.

To evaluate the restorative quality of the sampled SVIs, a survey was
conducted using the Perceived Restorativeness Scale-11 (PRS-11). The
original PRS-11 consists of 11 questions, with two questions related to
scope, and three questions each for being away, coherence, and fasci-
nation, as defined by Pasini et al. (2014). Following the approach of
Celikors and Wells (2022), we selected the four best question
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Table 3

Statistical analysis of restoration quality data set.
Labels Train data Test data
Low-quality 347 87
Medium-quality 287 72
High-quality 258 64
Proportion 0.80 0.20
Total 892 223

descriptions for each indicator in our study. The specific illustrations
and definitions of each question are provided in Table 4. Participants
were instructed to select the image from our developed platform (Fig. 3)
that best matched the description of the problem. Participants were
given the option to click the Left or Right button, and the selected image
would gain one point accordingly. If participants selected Neither or
Both, neither image would gain any points, or both images would gain
one point. Each image was evaluated for a duration of 30 s, and each
image received a minimum of 20 evaluations (Celikors and Wells, 2022).

During a week-long online survey, we collected evaluation results
from 120 participants, consisting of 70 women (average age = 24.658)
and 50 men (average age = 26.059). The ethical aspects of the experi-
ment were reviewed and approved by our university’s institutional re-
view board. To calculate the average score of the four indicators,
representing the comprehensive restoration quality of the SVIs, we
employed the Trueskill method (Herbrich et al., 2006). The scores were
calculated on a scale ranging from 0 to 1. Subsequently, the final results
were categorized into three classes as mentioned earlier, utilizing the
Jenks Natural Breaks method. These class labels were assigned to the
nodes of the city-level graph (Table 3).

3.4. Model training and evaluation

In this study, we used the Graph Isomorphism Network (GIN), which
has demonstrated excellent performance on various benchmark datasets
and graph tasks (Xu et al., 2019). A significant feature of GIN lies in its
accurate bounding of the expressiveness of GNNs. The key equation for

Table 4
Description of recovery quality evaluation questions (based on PRS-11
questionnaire).

Restorative Definition Function Questions

quality

Being-away Absence of some Elimination of “To stop thinking
aspect of life that is everyday about the things
ordinarily present distractors. that I must get
and presumably not done I like to go
always preferred. to places like

this.”

Coherence Interrelatedness of Sufficient “It is easy to see
the immediately connectedness how things are
perceived elements. makes it possible to organized in this

build a mental map place.”
and make sense of
the environment.
Scope Constitution of a Sufficient scope “This place is

Fascination

larger whole.

Mind-wandering via
involuntary bottom-
up attention.

makes building a
mental map
worthwhile by
facilitating curiosity
and a desire to be
involved in the
environment.
Reducing mental
fatigue by shifting
from voluntary to
involuntary
attention.

large enough to
allow exploration
in many
directions.”

“In this place, my
attention is
drawn to many
interesting
things.”

Note: Definition and function of each restorative quality and measurement based
on (Pasini et al. 2014, Celikors and Wells2022).
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GIN updating node representations is as follows (Formula 1):

B = MIPY (1 -+ &) B + Ty D) (1)

where A represents the feature of node v at layer k.¢ is a learnable
parameter, used to build self-loops for the central node. .7 (v) is the
neighboring nodes for node v. MLP% denotes the Multi-Layer Percep-
tron at layer k, consisting of learnable parameters. GIN is one such
example among many maximally powerful GNNs while being simple.
For model structure, refer to S1 Appendix, Fig. S3.

In addition, we conducted several experiments to compare our
approach with other graph models, including the Topology Adaptive
Graph Convolutional Network (TAGCN) (Du et al., 2018), Attention-
based Graph Neural Network (AGCN) (Thekumparampil et al., 2018),
SAGE (Hamilton et al., 2017), Graph Attention Network (GAT)
(Velickovic et al., 2017), Simplifying Graph Convolutional Networks
(SGC) (Wu et al., 2019), and Graph Convolutional Networks (GCN) (Kipf
and Welling, 2016). In our study, the GCN model was configured with
two different types of two-layer architectures. GCN 1 represented the
hidden channels set to 32 and 16, while GCN 2 represented the hidden
channels set to 64 and 32. Each of the graph-based models trained 500
epochs.

Furthermore, to verify the spatial-dependent ability possessed by
GNN-based models, we also compared five machine learning models
without any spatial weight, including Random Forest (RF) (Breiman,
2001), Decision Tree (DT) (Hastie et al., 2009), K-Nearest Neighbors
(KNN) (Peterson, 2009), Radial Basis Function Support Vector Machines
(RBF SVM) (Schwenker et al., 2001), and Gradient Boosting Decision
Trees (GBDT) (Friedman, 2001). Additional parameter and setting de-
tails were provided in S1 Appendix, Table S3. The accuracy score and F1
score (Hossin and Sulaiman,2015) were used to assess the model per-
formance, and GNNExplainer (Ying et al., 2019) was used for the
interpretable analysis of the graph model, which made the model pre-
diction process more understandable (for detailed methodology, please
refer to the S1 Appendix, Fig. S4).

4. Results
4.1. Spatially dependent model performance and prediction results

According to the results presented in Fig. 4, the GIN demonstrated
the highest performance in terms of classification (Acc = 0.749, F1 =
0.740) compared to other graph-based models. It was followed by GCN2
(Acc =0.733,F1 =0.711) and GCN1 (Acc = 0.715, F1 = 0.705) in terms
of intra-group comparisons. On the other hand, among the traditional
methods mentioned in Table 5, the RF achieved the best classification
performance (Acc = 0.567, F1 = 0.440), followed by RGF SVM (Acc =
0.562, F1 = 0.407) and GBDT (Acc = 0.561, F1 = 0.405). These results
indicate that graph-based models, which take into consideration spatial
dependence, have higher classification accuracy compared to traditional
methods. This result supports our hypothesis that incorporating spatial
dependencies in graph networks can enhance the accuracy of the
restoration measurement task (Zhang et al., 2023; Liu et al., 2023; Liu
and Biljecki, 2022). Additional details were provided in S1 Appendix,
Table S4, and Fig. S5.

The classification performance of the GIN model was notably satis-
factory when compared to the other models, as evident from the analysis
of the confusion matrix and T-SNE results (Fig. 5). The confusion matrix
demonstrates the GIN model’s capability to accurately identify all three
categories of urban restoration quality in the test dataset. However,
there were instances where certain roads within each category were
misclassified as belonging to other categories. For instance, during the
prediction of high-quality roads, 10 roads were incorrectly classified as
low-quality.

We attribute this misclassification to the presence of data imbalance,
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Questions

/011 To stop thinking about the things that | must get done I like to go to places like this.

Fig. 3. Interface of urban restoration evaluation platform.
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Fig. 4. Model performance. The training loss curves (left) and accuracy curves (right) of eight graph-based models were analyzed in this study. The spatial weight
used for these models was K-Nearest, and the training process was conducted for 500 epochs.

Table 5
Model prediction performance.
Model Spatial Accuracy F1 Score Time
Weight (%)t [CON ®1

TAG (Du et al., 2018) o 0.664 0.663 26.790

GCN 1 (Kipf and Welling, o 0.715 0.705 8.570
2016)

GCN 2 (Kipf and Welling, o 0.733 0.711 9.700
2016)

AGNN (Thekumparampil o 0.656 0.654 10.320
et al., 2018)

GIN (Xu et al., 2019) o 0.749 0.740 11.260

SAGE (Hamilton et al., o 0.687 0.686 7.620
2017)

GAT (Velickovic o 0.657 0.656 42.720
et al.,2017)

SGC (Wu et al., 2019) o 0.635 0.635 13.280

RF (Breiman, 2001) X 0.567 0.440 20.790

DF (Hastie et al., 2009) X 0.529 0.482 0.350

KNN (Peterson, 2009) X 0.504 0.434 0.160

RGF SVM (Schwenker X 0.562 0.407 2.040
et al., 2001)

GBDT (Friedman, 2001) X 0.561 0.405 80.370

Note: GCN 1 represented the hidden channels set to 64 and 32, while GCN 2
represented the hidden channels set to 32 and 16. The symbol “o” indicates that
spatial weight was considered, while “x” represents the absence of spatial

weight.

as the medium and low-quality data instances are more prevalent.
Moreover, we investigated to determine whether the model effectively
learns visual classification features. By reducing the dimensionality of

the GIN model’s output layer, we discovered that the model possesses
sufficient capability to classify restoration quality based on city features.
Consequently, subsequent studies will be based on the GIN model.

4.2. Spatial distribution of restorative perception of urban streets

As shown in Fig. 6a, we mapped the predicted results using the GIN
model (highly saturated lines indicate high restoration quality, other-
wise the opposite). Within the third ring road of Wuhan, there were
1,344 high-quality restoration roads, 1,420 medium-quality restoration
roads, and 2,311 low-quality restoration roads. High-quality restoration
spaces have shown an aggregated pattern throughout the city, which
may be related to the predictive model we used. GIN models consider
not only their features but also the features of neighboring nodes.

High-quality restoration spaces were most prominent in 1, 2, 3, 4,
and 5 areas (Fig. 6a). Among them, area 1 is the largest freshwater lake
in Wuhan, namely Donghu Lake, with charming waterfront spaces.
Waterfronts exhibited more significant restoration abilities, producing a
cooling sensation in summer and providing a comfortable environment
for sightseeing (Burmil et al., 1999). Interestingly, other high-quality
restoration spaces were closely related to surrounding parks or green
spaces, such as Zhongshan Park around 2, Hanyang Jiangtan Park
around 3, and Houxianghe Park around 4. Urban parks or green areas
provide abundant natural resources for attention restoration, and the
benefits of interacting with nature are evident (Dadvand et al.,2015;
Engemann et al., 2019). There were also means that urban greenery
infrastructure had impacted the spatial structure of the neighboring
streets. Surprisingly, although located in a high-density commercial
area, 5 was still predicted to have high restoration quality. We believe
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Fig. 5. Analysis of GIN model prediction results (spatial weight: K-Nearest, epoch = 500). (a) Confusion matrix of model prediction results. (b) T-SNE to reduce the
dimension of the output layer of the GIN model.
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Fig. 6. Mapping distribution of Wuhan city spatial restoration quality. (a) Restoration quality mapping in Wuhan. (b) Classification of restoration quality, Source of

the map: © OSM contributors.

this is related to the surrounding shopping centers and historic districts, in Wuhan, which is the most popular city in central China. However,
which have been proven to promote attention restoration (Staats et al.,2 monotonous residential spaces can easily feel boring, and tall buildings
016; Fornara et al., 2009). Furthermore, we found that low-quality reduce the view distance, affecting the quality of restoration (Lindal and
restoration spaces were mainly concentrated in residential areas, such Hartig, 2013; Zhang et al., 2018).

as 6, 7, and 8. Residential areas occupy the largest proportion of land use Based on the predicted results, we categorized the street scenes

/2962
396 | Original Node:

Low-quality

II 0.8 5
¥ 127 0.6 é
s
e 24 0 4‘;8"
v Wuhan City &
(a) Road network diagram 02
124—125 | 126—125 | 127—125 3962—125
0.372 0.747 0.645 0.408
3963125 | 3964—125 | 3935125
0.290 0.654 0676 3935

(b) Nodes contribution

(c) Node relationship between its surrounding spaces

Fig. 7. Node relationship analysis based on spatially dependent GIN model. (a) Randomly selected road network diagram. (b) Nodes contribution for target node. (c)

Node relationship between its surrounding entities.
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according to different restoration qualities (Fig. 6b). We found that low-
quality spaces lacked green vegetation and had high building densities.
In medium-quality spaces, there was a higher presence of shrubs, which,
to some extent, increased the restoration quality of the space. In high-
quality spaces, the proportion of comfortable roads and the abundance
of natural urban landscapes added to the attractiveness and charm of the
space.

In addition, to capture the spatial dependencies in the GNN-based
model, we employed GNNExplainer for interpretable analysis
(mentioned in Section 3.4). A road unit was randomly chosen to eluci-
date the relationship between this particular space and its surrounding
environment (Fig. 7). The analysis revealed that when street 125 was
predicted as a low-quality restoration space, the adjacent spaces 126
(0.747) and 3935 (0.676) had the most significant impact on it, followed
by space 3964 (0.654). In summary, the GNN-based model not only
effectively considered the influence of neighboring spaces, but also
provided a holistic perspective.

4.3. Relationship between spatial structure and restoration quality

As mentioned above, no studies have confirmed the role of spatial
structure in restorative environments. We performed ablation experi-
ments based on the GIN model, as shown in Table 6. It can be observed
that in Experiment 1, considering all three classes of urban features
together, the best classification performance was obtained (Acc = 0.749,
F1 = 0.740). However, in Experiment 2, when we removed the spatial
features only, the classification performance decreased significantly
(Acc = 0.668, F1 = 0.667). To further confirm the impact of spatial
features on the prediction results, experiments 3 and 4 were conducted
to remove the perceptual and socioeconomic features, respectively. The
final results confirmed that spatial features significantly affect the
classification performance of the model (Experiment 3: Acc = 0.708, F1
= 0.705; Experiment 4: Acc = 0.722, F1 = 0.718). Experiment 5, which
only considered spatial features, also exhibited good classification per-
formance (Acc = 0.704, F1 = 0.703). In conclusion, the spatial features
increased the prediction accuracy and significantly affected the model
performance, suggesting that the spatial structure had a significant
impact on the spatial restoration ability. Additional details can be found
in the S1 Appendix and Table S5.

To further investigate the impact of spatial structure on the quality of
urban restoration, we used GNNExplainer as a tool to open the “black
box” of model prediction. Based on Experiment 5, we directly used a
spatial graph (without embedding) as input to predict the restorative
quality using GIN mode (i.e., graph classification). Thus, we were able to
identify which entities significantly influence spatial restoration quality
and determine their importance in the street-level graph. Fig. 8 presents
the results obtained from two selected research areas in Wuhan city,
representing spaces with low and high restorative quality, respectively.
The results showed that artificial entities, such as sidewalks (0.543),
fences (0.531), and buildings (0.526), had a higher contribution to the
low-quality space. Conversely, entities such as the sky (0.503) and
vegetation (0.491) demonstrated a greater effect on high-quality space,
aligning with previous studies (Ma et al., 2023).

In addition, we utilized the betweenness centrality indicator to
measure the importance of entities within each street-level graph. Nodes

Table 6
Ablation experiment results based on GIN model.
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(or entities) with higher betweenness centrality values were regarded as
having a greater influence or control over visual perception in the
network (Brandes, 2001). Fig. 9 illustrates the calculation of the top 100
road units predicted as corresponding classes The results consistently
revealed that spaces with high restorative quality typically exhibited
higher betweenness centrality values for natural entities such as vege-
tation (0.144), terrain (0.129), and sky (0.121). These findings further
support the notion that these natural elements play a significant role in
enhancing the restorative quality of urban spaces.

5. Discussion

This study introduces a spatial-dependent GNN approach to predict
urban restoration quality and reveal the relation between spatial
structure and restoration space. By embedding spatial unit graphs
through multiple sequential SVIs, the influence of spatial structure on
restorative quality and the structural heterogeneity of restorative space
are explored. Our findings suggest that the spatially dependent GNNs,
through learning from the fusion of various features and geographic
relationships, not only take into account the environment of specific
locations but also provide a holistic perspective. This approach facili-
tates a comprehensive understanding of restoration characteristics at an
urban scale, maximizing the consideration of interdependency between
spaces. Therefore, our study fills a gap in understanding how spatial
structure influences restoration quality.

Furthermore, we found that spatial structure strongly determines the
restorative quality of urban environments. In spaces with low restora-
tion quality, the importance of non-natural entities is significantly
higher, while in spaces with high restoration quality, the opposite is
true, with natural entities becoming more important. This is consistent
with previous research, which shows a positive correlation between
natural elements and restoration, together with various health benefits
(Capaldi et al., 2014; Schertz and Berman, 2019).

In addition to the influence of spatial structure, our research has also
revealed the distribution characteristics of high-quality restoration
spaces in cities. Notably, urban waterfront spaces emerge conspicuously.
Water views are considered positive restorative visual components, and
people tend to walk or cycle in areas with abundant water views to
reduce stress (Massoni et al., 2018). Furthermore, the characteristics of
natural water can seamlessly integrate into the surrounding natural
landscapes, enhancing aesthetic experiences and restoring attentional
resources (Markevych et al., 2017; Roe et al., 2019). Therefore, water-
front landscape types should be given priority in urban design and
redevelopment. Moreover, urban green spaces are closely associated
with high restoration quality, and numerous studies have demonstrated
the psychological benefits of urban green spaces, such as urban parks
(Nordh et al., 2011, 2009). This research thus provides further evidence
supporting the restorative potential of cities.

Additionally, while SVIs are emerging as an important data source in
urban research (Tang and Long, 2019; Biljecki and Ito, 2021), there have
been limited studies using them to investigate spatial restoration quality
on an urban scale. SVIs demonstrate significant advantages in research.
First, it has wide coverage, fast updates, and precise geographic co-
ordinates. Second, it has a wealth of visual and spatial information, and
when used to predict human perception, there is a minimal amount of

Features Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Socioeconomic o o o X X

Perceptual o o X o X

Spatial o X o o o

Accuracy (%) 0.749 0.668 0.708 0.722 0.704

F1 Score (%) 0.740 0.667 0.705 0.718 0.703

@
X

Note: The symbol “o” indicates that the features were retained, while

represents the removal of these features.
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Fig. 9. The betweenness centrality of 19 types of spatial entities in three restorative spatial quality. “1” represented low restoration quality, “2” represented medium

restoration quality, and “3” represented high restoration quality.

data bias (Kang et al., 2023; Zhao et al., 2023; Ma et al., 2023). In this
study, to predict urban restoration quality, a large number of SVIs were
used to extract visual features and human perceptions, and embed the
spatial structure in sequential scenes. The results proved that SVIs can
accurately predict urban restoration quality and demonstrated the ad-
vantages of representing the spatial structure.

Simultaneously, this study has some limitations. First, urban envi-
ronments are dynamic and influenced by factors such as human activ-
ities, urban functions, and traffic conditions (Kaplan and Herbert,1987;
Quercia et al., 2014). Complex features, such as sound and temperature,
can affect the restoration quality (Hartig et al., 2007; Qi et al., 2022;
Ratcliffe, 2021). In the future, it is possible to expand to a broader range
of dimensions by integrating multi-modal data or digital environments
that incorporate these elements that potentially influence the quality of
environmental restoration. Second, the city features captured by SVI
data only reflect specific moments in urban scenes, thus exhibiting a
temporal lag. Also, SVI is primarily captured from a driving perspective,
lacking the perception of content from a human perspective (Biljecki
and Ito, 2021). Finally, in a restoration environment, the structurally
simple PRS-11 may weaken the accuracy of the assessment of environ-
mental restoration quality. Future research could consider incorporating

10

more diverse attention restoration questionnaires and questions to
improve the precision of the results.

6. Conclusion

The long-standing discussion on the relationship between restorative
quality and the physical environment lacks research on the impacts
caused by diverse spatial structures and is scarce in efficient ways for
measuring on an urban scale. Our study proposed a spatial-dependent
GNN approach for solving these questions, which includes two types
of graphs: street and city levels. This study made three contributions.
First, we proposed a spatial-dependent prediction method for measuring
urban restoration quality by capturing road topology relationships using
graph neural networks and aggregating contextual features of cities as a
city-level graph. Second, we used a novel graph approach to reveal
spatial structure effects among different restoration qualities by
capturing the intrinsic and extrinsic relationships between entities
through sequential SVIs. Third, the study highlighted the greater sig-
nificance of naturally relevant entities (e.g., trees) compared to artificial
entities (e.g., buildings) in relation to high restoration quality, thereby
enhancing the understandability of restorative spatial features. Overall,
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this study provides insight into healthy city construction, improves the
interpretability of urban restoration spaces, and can be applied further
to the design of healthy medium-scale spaces, such as communities or
parks.
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