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ARTICLE INFO ABSTRACT
Keywords: Cities play a pivotal role in achieving 'Carbon Peak’ and 'Carbon Neutrality’ objectives through the imple-
Energy and environmental productivity mentation of strategies aimed at mitigating environmental risks. While the environmental impacts of industrial

Thirteen urban agglomerations

] ~OHEr production activities have been widely examined, the nuances of their internal structures remain obscure. This
Malmaquist productivity index

study delves into the industrial sector across the ’thirteen urban agglomerations (TUAs)’ in mainland China,

Decomposition covering the years 2006-2016, by developing a comprehensive (source-specific and variable-specific) decom-
position framework for Malmquist productivity index. The framework is utilized to discern whether efficiency
changes or technological advancements drive productivity growth, considering input/output variables such as
capital and labor. Findings show that the average annual environmental productivity gain during the examined
period was 2.6 %, suggesting a general enhancement in productivity within TUAs’ industrial sectors. A detailed
breakdown of productivity changes indicates that a combined contribution of 1.8 % to environmental produc-
tivity growth stemmed from energy use and pollutant variables, with emissions of industrial sulfur dioxide being
the most significant at 0.9 %. Conversely, the ’catch-up effect,” or environmental efficiency change, was negative
(—0.2 %), indicating the TUAs’ inability to emulate the productivity levels of more advanced areas. Industrial
energy use and capital inputs were the primary contributors to this negative trend, each accounting for a —0.2 %
impact. The results underscore the importance of facilitating technology transfers from more developed to less
advanced regions, especially regarding renewable energy and capital investment, to bolster environmental
performance and productivity in the TUAs’ industrial sectors.

instance, several Chinese cities along the Yangtze River’s middle and
lower reaches, in Northeast China, and the Beijing-Tianjin-Hebei area

1. Introduction suffered intense smog episodes in 2013, 2016, and 2017. Findings from

the National Environmental Analysis by the Asian Development Bank

Smog has become a critical environmental problem fueled by in- and Tsinghua University (2013) show that fewer than 1 % of China’s
dustrial and urban growth, commanding the focus of academics and largest 500 cities meet the World Health Organization’s air quality
policymakers alike [1,2]. The pollution emanating from economic ac- standards. Researchers like [6] have pointedly documented the escala-
tivities inflicts notable environmental damage and economic hazards tion in prolonged smog events to evoke a response from authorities.
globally. For example, air quality has a direct correlation with the U.S. Echoing these concerns, the Report on Comprehensive Scientific
housing market [3], and wildfires in Southern Europe account for a GDP Assessment of Airborne Particulate Matter by the [7] clarifies that at-
contraction of 0.11-0.18 % [4]. [5] stress the immediate requirement to mospheric fine particles attract numerous carcinogens and mutagens
reduce environmental risks to agriculture, employing cross-country with genotoxic potential. The pernicious health impacts of these pol-
panel data. The persistence of sustainability challenges poses risks of lutants are undeniable; they are linked to increases in mortality, the
deepening inequality as global production networks may redistribute intensification of chronic conditions, as well as respiratory and cardio-
pollution to nations with weaker environmental safeguards. This is of vascular disorders. Changes in lung function, influences on fertility, and

particular concern in developing countries, especially China. For
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Nomenclature

Abbreviations

BAM Bounded-adjusted measure
CE Contemporaneous efficiency
CIE Current inefficiency

CRS Constant returns to Scale
DDF Directional distance function
DEA Data envelopment analysis
DMU Decision-making unit

EC Efficiency change

EPT Environment Production Technology
GHG Greenhouse gas

GE Global efficiency

GIE Global inefficiency

GPEC Global pure efficiency change

GPTP Global pure technological progress

GSEC Global scale efficiency change

GTPSC  Global technological progress of scale change
GVMI Global variable-specific Malmquist index

IE Inefficiency
SBM Slack-based model

TUAs Thirteen urban agglomerations
TP Technological progress

TFP Total Factor Productivity

TR Technology ratio

VRS Variable returns to Scale
Symbols

Sy slack of inputs

Ly lower bound for inputs

Ue upper bound for outputs

impairment of the immune system are all associated with these
contaminants.

The industrial sector is the primary contributor to smog, which poses
significant risks to human health. As one of the key drivers of economic
growth, the industrial sector heavily relies on fossil energy consumption
[8] and is responsible for emitting carbon dioxide and sulfur dioxide [9].
For example [10], have highlighted that the industrial sector contributes
more than 52.89 % to overall sulfur dioxide emissions in certain regions
of China [11]. state that the industrial sector in Canada accounts for over
39 % of the country’s total greenhouse gas emissions. In contrast to
developed countries, China, as the largest developing country, views the
industrial sector as a crucial engine for further development. Conse-
quently, the byproducts of industrial activities, such as carbon dioxide
and sulfur dioxide emissions, represent the intricate nexus of energy,
environment, and the economy in the country. Furthermore, the energy
consumption and pollutant emissions from industrial activities also
present significant constraints on the process of intensive urbanization.
It is evident that a cleaner and more sustainable development approach
should be pursued to address the pressures on natural habitats [12,13].
The current production patterns result in various negative externalities,
primarily in the form of environmental pollutant emissions due to the
extensive use of conventional inputs [14]. argue that investing in
innovation and progress could partially offset these costs and benefit the
environment. However, Porter’s viewpoint has received less attention in
developing countries where the conventional approach remains preva-
lent. In an unsustainable economy, the lack of awareness regarding
environmental costs is accompanied by expanding energy consumption,
high-density  pollutant emissions, and significant technical
inefficiencies.

Conducting research on an economy’s performance within the
Malmquist environmental total factor productivity (ME-TFP) framework
allows for a comprehensive analysis of both economic growth and
environmental protection [15,16]. This framework considers the trans-
formation of multiple inputs into multiple outputs. Through such an
approach, it becomes possible to identify trends in productivity change
for specific decision-making units and determine avenues for enhancing
existing environmental regulations in line with the principles of sus-
tainable development. In conclusion, prioritizing sustainable develop-
ment requires adopting a cleaner and more sustainable development
mode that addresses the pressures on natural habitats. The current
production patterns generate negative externalities, including environ-
mental pollutant emissions resulting from the extensive use of conven-
tional inputs. Previous work could benefit from further refinement. A
notable limitation is the prevalent focus on composite indicators that
encapsulate both environmental efficiency and productivity. While
useful for regional comparison, these metrics may obscure the distinct

elements or variables driving performance enhancement. A more gran-
ular analysis would elucidate the particular dynamics behind environ-
mental achievements. Additionally, the generic classification of all
energy consumption as ’dirty’ overlooks the increasing integration of
renewable sources. An exemplar is Shanghai’s stipulation for non-fossil
renewable energy to represent 25 % of total energy use. Recognition of
renewable energies’ burgeoning role is crucial for an accurate assess-
ment of environmental efficiency. In essence, there resides substantial
potential for enriching the current body of literature on this topic.
Considering the academic and policy context, this work has the po-
tential to provide valuable insights and contributions in three aspects.
First, from a methodological perspective, the work addresses a limita-
tion commonly encountered in previous studies by illustrating the
disposability for both input-oriented and output-oriented variables. This
consideration allows for a more comprehensive analysis and overcomes
a gap in existing literature. Second, the work introduces a novel
managerial disposability concept for the Bounded-adjusted measure
(BAM), which was introduced by Ref. [17] and is one of the more recent
additions to the Data Envelopment Analysis (DEA) family. This concept
opens new avenues for exploration and warrants further investigation
and application. Lastly, the work proposes a novel global
variable-specific Malmquist index and incorporates this index into the
DEA-based framework. This approach not only enhances the analytical
capabilities of the research but also offers a fresh perspective on eval-
uating and measuring environmental performance within the context of
the study. In the robustness, this work also compares our results with
those employing by-production technology [18,19]. Empirically, the
work highlights the significance of city-level data from China’s "thirteen
urban agglomerations (TUAs)." These agglomerations are key regions for
regulation, as emphasized in the Plan of Air Pollution Prevention in Key
Regions throughout 2011-2015 (12th "Five-Year Plan") issued by the
Chinese central government. To capture the environmental impact
effectively, the work specifically focuses on industrial sulfur dioxide and
dust (soot) emissions as undesirable outputs, aligning with the objec-
tives of the study. More details of Thirteen Urban Agglomerations are
given in the Appendix. The aim of this study is to demystify urban
growth at the city level, with a particular focus on the boundaries
imposed by energy consumption and pollutant emissions. This research
has developed a nuanced decomposition framework for the Malmquist
productivity index, which considers both variable-specific and
source-specific factors, to initially estimate the overarching environ-
mental productivity index. Upon applying this comprehensive frame-
work to China’s TUAs, this article gains insights into the green growth
status of individual cities. These insights pave the way for establishing
targeted ’common but differentiated’ industrial environmental regula-
tions. From a variable-specific lens, this article dissects the total



X. Chen et al.

environmental productivity index, technological advancements, and
efficiency modifications to single out each variable’s contributions. This
analysis allows us to distinguish the most viable strategies for cities
pursuing sustainable development trajectories. Subsequently, this work
seeks to categorize various regions based on their environmental
achievements, which will inform tailored regulatory measures.

The subsequent sections of the research are structured as follows:
Section 2 provides a comprehensive literature review. Section 3 presents
the methodology framework in detail. It elaborates on the concept of
disposability for both input-oriented and output-oriented variables and
introduces the BAM. Furthermore, the section explains how the concept
of managerial disposability is applied to the BAM. Additionally, the
construction of the global variable-specific Malmquist index is outlined,
and its incorporation into the framework is described. In Section 4, an
empirical analysis is conducted focusing on the TUAs in China. This
analysis utilizes the city-level data and examines the environmental
performance of these key regions for regulation. The specific emphasis is
placed on industrial sulfur dioxide and dust (soot) emissions as unde-
sirable outputs. The empirical findings provide insights into the envi-
ronmental efficiency and productivity of the TUAs. In Section 5, a
robustness analysis is conducted, while Section 6 concludes the
research.

2. Literature review: drivers of environmental productivity

Existing literature that probes the interconnected realms of energy
and pollutants is plentiful and varied, featuring several studies of
particular significance [20,21]. A segment of studies has honed in on the
economic ramifications of energy-centric policies at the national level.
For instance Ref. [22], gauge the enduring effects of widespread carbon
taxation on energy applications, contrasting with empirical investiga-
tion of [23] into energy-efficient housing via a field experiment under-
taken in Mexico. In more recent discourse, there has been a growing
focus on urban-level pollution mitigation, largely encouraged by the
versatility of treatment approaches [24-27]. Prior investigations have
thoroughly scrutinized the interplay among energy consumption,
pollutant discharge, and the expansive production process. This process
duly acknowledges the limitations placed upon economic activity by the
parameters of energy and pollution. A favored methodology for
modeling this production process and appraising environmental total
factor productivity (TFP) is data envelopment analysis (DEA), initially
introduced by Ref. [28]. DEA is adept at integrating considerations such
as energy utilization and emission levels within its evaluative frame-
work. Moreover, augmenting DEA with productivity indices like the
sequential Malmquist-Luenberger productivity index yields more
nuanced insights [29]. To clarify, DEA is a tool for quantitative analysis
that assesses the relative efficacy by quantifying how closely a particular
decision-making entity approximates the efficiency frontier, assigning
static scores between zero and one. Contrastingly, productivity change
encompasses the temporal shifts of these entities across different time
slices. Spatially, investigations into the interrelations among energy
consumption, pollutant emissions, and economic prowess can be clus-
tered into three distinct categories. The initial category entails inter-
national studies, exemplified by the research of [30], who delves into
the impact of heterogeneity on the stability and efficacy of international
environmental accords. This category emphasizes decoding the com-
plexities and obstacles inherent in worldwide environmental collabo-
ration. The second category encompasses country-specific analyses,
with the work of [31] serving as a telling instance. They dissected the
repercussions of energy substitution in China’s unique milieu, thus
shedding light on the singular economic and ecological narratives of
individual nations. The focus here rests on dissecting the nuances of
energy policies and their environmental aftereffects within a sovereign
boundary. The third category, regional studies, zooms in on discrete
locales, as illustrated by Ref. [32] in their probe of Jiangsu province,
China. Their investigative lens, the whole process decomposition
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method, facilitates an intimate appraisal of that region’s environmental
stewardship. This granular perspective enhances the understanding of
locality-specific elements and directives governing energy and emis-
sions. In the sphere of productivity research, scholars have orchestrated
a synthesis between productivity analysis and the DEA paradigm [33].
introduce the Range-adjusted Measure alongside the Luenberger Pro-
ductivity Indicator and adapted these tools for analysis within Chinese
energy policy, affording a layered examination of productivity dynamics
and efficiency gains in this ambit [34]. intricately weave the framework
of the proportional directional distance function (pDDF) into the fabric
of the established output-oriented radial efficiency measure. Merging
this with the classical CCD (Caves, Christensen, Diewert) Malmquist
index, they crafted a productivity gauge that accurately captures both
the directional and radial shifts in efficiency. Furthermore [35], imple-
ment the DEA-Malmquist modality in their scrutiny of China’s real es-
tate domain, thus enabling a discerning evaluation of productivity
trajectories and the quest for augmentation in efficiency specific to the
property sector.

A multitude of modeling techniques have been applied to gauge
environmental efficiency and productivity adeptly. As a case in point
[36], harness the power of Malmquist-Luenberger indexes for a
deep-dive into China’s star-rated hospitality sector, whereas [37] turns
the lens towards Korea’s manufacturing firms, with an emphasis on
carbon neutrality. Meanwhile [38], utilize the Malmquist index to
elucidate the environmental productivity landscape within China’s
metallurgy sector, and [39] quantify the socio-environmental strides
made by various enterprises. The by-production environmental tech-
nology, brought into the limelight by Ref. [18], has seen increased
adoption, particularly due to its innovative double frontier concept,
further enhanced by Refs. [40,41]. [42] provide an important extension
of this model to the economic sphere. The by-production framework
offers a robust mean to dissect environmental efficiency and produc-
tivity. Despite these developments, the extant literature predominantly
fixates on the gross estimations of environmental efficiency and pro-
ductivity, often overlooking the inward contributions of each discrete
component. Confronting this gap, our article moots a variable-specific
decomposition methodology, scaffolded on the comprehensive decom-
position technology proposed by Ref. [43]. This scheme disentangles the
threads of environmental technological evolution and efficiency vari-
ance, spotlighting both frontier shifts and catch-up mechanisms. This
methodological stance reverberates with the analytical choices of
studies like that by Ref. [39]. It is critical to recognize, however, that the
prevailing frameworks have not delineated with absolute clarity
whether the concentration should be on modulating energy use or
curbing undesirable outputs. Thus, this article presents a distinct
gradient in our discourse: a variable-specific decomposition approach,
engineered to unmask the intricate pathways through which environ-
mental productivity, coupled with technological and efficiency changes,
can be vigorously fostered. By parsing out the input of individual com-
ponents, this technique sheds light on actionable strategies and bespoke
policy interventions poised to bolster environmental stewardship with
exacting precision.

The Malmquist Productivity Index and the Luenberger Productivity
Indicator, as delineated in scholarly narratives, have garnered substan-
tial interest for their robust analytical capabilities. The Malmquist index,
in particular, with its foundation in a multiplicative paradigm, is
extensively leveraged across diverse sectors, commanding a robust
reputation for appraising efficiency change (EC) and technical progress
(TP). Especially within the Chinese analytical sphere, the Malmquist
index remains a topic of considerable utility though there exists poten-
tial for more expansive inquiries. For instance, the employment of the
output-oriented Malmquist Productivity Index in Ref. [44] provides a
detailed review of the Chinese agricultural milieu from 1994 to 2008,
enhancing the comprehension of efficiency modifications and techno-
logical advancements peculiar to the sector. Similarly [45], proffer an
innovative construct for gauging static inefficiencies and the composite
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Malmquist-Luenberger ~ productivity =~ index  within = China’s
manufacturing landscape, offering valuable perspectives on the sector’s
comprehensive productivity evolution. Further to this [46], advance the
development and application of the DEA-Malmquist methodology to
assess urban infrastructure systems. This novel employment elucidates
general efficiency changes and technological progress yet does not
venture into the intricacies of variable-specific decomposition. The in-
clusion of such a decomposition avenue could unfurl additional layers,
revealing the underlying influences steering productivity meta-
morphoses within individual sectors or industries.

Recent literature has centered on the global implementation of DEA,
Luenberger, and Malmquist methodologies. Notable examples include
[47], who introduce an approach using the Malmquist productivity
index for a two-stage dynamic system, subsequently applying this
framework to Asia-Pacific airlines. Likewise [48], develop a circular
DEA framework to evaluate efficient water usage and recycling pro-
cesses across Spanish regions. This article, however, concentrates on
China—a country viewed as the largest developing nation, which has
undergone swift industrialization and urbanization, courting significant
economic expansion. Nonetheless, this trajectory of development has
drawn scrutiny for substantial emissions of pollutants, resulting in
environmental dilemmas like smog events [32,49,50]. Consequently,
the repercussions of intense energy utilization and its correlated
greenhouse gas (GHG) and air pollutant discharges have come under
increased observation [51]. Such negative impacts, associating energy
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consumption with natural hazards, have posed obstacles to China’s
productivity growth [52]. Despite endeavors from the Chinese central
government to impose regulatory measures via Five-Year plans, these
policies often fall short of detailed specificity and efficacy at the
municipal government level [53].

This article distinguishes itself by utilizing the BAM model, originally
introduced by Ref. [17]. This model offers several advantages over
alternative approaches. First, its additive structure enables
variable-specific decomposition, allowing for a more detailed and
nuanced analysis. Second, compared to the Range-adjusted Measure
[35], the BAM model exhibits higher discriminatory power, enhancing
its ability to differentiate between different units of analysis. Third,
unlike methods such as Slack-based models [54] and Directional Dis-
tance Functions [55], which require the specification of artificial vector
settings that can introduce bias, this non-parametric BAM model avoids
such issues. For a more detailed explanation of the Bounded-adjusted
Measure, refer to Ref. [17]. The primary contribution of this work lies
in the proposal of a variable-specific decomposition approach for the
Malmquist Index. While previous literature has focused on the appli-
cation of this approach, the use of an all-in-one indicator fails to provide
detailed policy implications for end-of-pipe regulation or source control.
In contrast, this developed decomposition framework allows us to
attribute the performance of cities to each specific input/output vari-
able. This provides valuable insights into identifying the most effective
strategies for promoting environmental performance. While this

Green Growth Accounting of Industrial Production Activities with Energy Pressures: City-level
Predicament and Countermeasures

\ City-level green growth
accounting

[ Production Technology H Natural disposability H Managerial disposability ]

Data Envelopment Analysis

Bounded-adjusted Measure |

l

/ -
/Data from "Three Regions
and Ten Urban Agglomerations |

\ (TRTAs)" //
\J

| Multiplication-based
decomposition analysis

Malmquist Productivity
Indicator

Efficiency change

[ Total factor productivity

Technical progress

Source control and end-of-pipe control ’

Fig. 1. Methodology framework of this article.
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research paradigm can be applied to any region with sufficient inpu-
t/output datasets, its application to China holds particular significance.
China accounts for approximately 22 % of global industrial outputs,
underscoring the relevance and implications of this study in this context
[56].

3. Methodology framework

In this study, we utilize the methodology introduced by Ref. [34] to
develop the Global Variable-specific Malmquist index (GVMI) for
China’s TUAs. The GVMI assesses the performance of these areas,
considering the limitations caused by energy consumption and air
pollutant emissions. Initially, in Fig. 1this research establishes a theo-
retical framework that lays the groundwork for the analysis. This
framework is critical for grasping the context and preparing for the
empirical investigation. Subsequently, this research explores the
disposability of both input-oriented and output-oriented variables,
forming conclusions based on the prevailing literature. This research
also presents the innovative BAM and incorporate an extended dispos-
ability concept into the model. The BAM provides numerous benefits -
for instance, its additive nature permits non-radial progress toward the
production frontier. Moreover, the BAM exhibits enhanced discrimina-
tory capability when contrasted with other models, such as the
Range-adjusted Measure. Notably, in distinction from the Slack-based
Measure and the Directional Distance Function), the BAM circumvents
the necessity for setting artificial parameters, rendering it a sounder
methodological choice.

3.1. The Interdisciplinary theoretical framework

The field of operational research has played a crucial role in
addressing environmental economics and management challenges,
which are essential for promoting sustainable development and meeting
human needs. Researchers in environmental economics have focused on
three pressing issues, as highlighted by Ref. [18]. First, there is a need to
address the byproducts of desirable outputs, which are represented by
greenhouse gas and air pollutant emissions. These undesirable outputs
pose significant environmental concerns and require effective manage-
ment strategies. Second, it is important to consider the further assimi-
lation of undesirable outputs into the environment. Understanding the
environmental impact and finding ways to mitigate or minimize their
effects are critical for achieving sustainable development. Lastly, the
interaction between regulatory policies and the production process
related to the environment needs to be examined. The effects of such
policies on environmental performance and the overall production
process require thorough analysis. While previous theoretical frame-
works have made significant progress in quantitatively analyzing these
issues, there is still considerable potential for further exploration. It is
crucial to develop suitable and reasonable mathematical expressions for
production technology that incorporate the generation of undesirable
outputs. This will enable us to accurately assess the gap between ideal
and actual environmental performance and identify the determinants for
narrowing this disparity.

The theoretical framework rests on the production possibility set,
allowing flexible quantity fluctuations [57]. The variables in the pro-
duction possibility set are taken for (x, e, k, ¥, b), which have particular
disposability for themself. Indeed, the production possibility set has
been modified for more functions, such as allowing for negative data
[58]. The production-possibility frontier, also known as the boundary of
the production possibility set, needs to satisfy the properties of con-
vexity and monotonicity, along with minimum extrapolation and rep-
resents the efficient production unit [35,59].

3.2. Environmental Production Technology

To accurately estimate energy and environmental performance, it is
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essential to address the treatment of undesirable outputs. Distinct
disposability assumptions can lead to varied policy implications. This
subsection will elaborate on the disposability settings for both input-
oriented and output-oriented variables.

3.2.1. Disposability for outputs

The integration of undesirable outputs, such as pollutant emissions,
into the framework of the Production Possibility Set, also termed Envi-
ronmental Production Technology, garners considerable attention.
Various methods exist for including undesirable outputs, each bearing
distinct implications for the intensity of environmental regulations [35,
60]. Broadly, two types of disposability are recognized: strong and weak.
Strong disposability equates the treatment of undesirable outputs with
that of desirable ones, reflecting a degree of environmental deregulation
without affecting total output. In this scenario, undesirable outputs may
effectively function as specific inputs, leading to an increase in desirable
outputs and a simultaneous reduction of undesirable ones. Conversely,
weak disposability indicates environmental regulation, where an in-
crease in desirable outputs is feasible with constant inputs. Here, the
objective is to augment the production of favorable outputs while
curbing environmental impact by controlling the generation of unde-
sirable ones. The choice between strong and weak disposability rests on
the environmental and policy context at hand. Strong disposability lends
a more adaptable approach, potentially allowing the expansion of
desirable outputs with fewer constraints on the creation of undesirable
ones. Weak disposability prioritizes stringent environmental regulation,
aiming to diminish the production of undesirable outputs while
enhancing desirable ones. Determining the most fitting disposability
approach necessitates a balanced assessment of environmental objec-
tives against economic factors. A judicious consideration of the conse-
quences of each method is crucial to select the one that best aligns with
the unique demands and policy goals of the situation.

Mathematically, to better characterize the production activities
incorporating undesirable outputs, this work needs to define the pro-
duction set P(x,e,k). Energy use and capital investment play crucial roles
in defining the state of energy systems. Upgrading energy technologies
and shifting energy-mix can lead to desirable outcomes such as energy
conservation, emissions reduction, and increased energy security.
Therefore, the analysis focuses on the capital stock and energy use,
categorizing inputs into conventional ones, energy use, and capital
stock. Assuming the vector y = (yl,yz-nyj> ;b= (by,ba:-bj) which
represent the variable set of desirable and undesirable outputs, respec-
tively. Then, the production set P(x,e, k) represents transferring con-
ventional inputs, energy use and capital investment (x,e,k) into
desirable and undesirable outputs (y, b). The simplest process can be
presented as follow:

P(x,e, k) ={(x,e,k,y,b) € T; (x,e, k)can produce(y,b) } 1)

Further on, the two types of acknowledged disposability for input-
oriented variables can be presented as follows.

(1) Strong disposability [61]:firstly proposed the strong disposability
(y,b) € P(x,e.k)
¥.b°) < (,b)
(y,b°) € P(x,e k). Assuming the number of Decision-making Units
(DMUs) is N (i.e., the types of undesirable outputs), then the

constraints of undesirable outputs can be expressed as:

for undesirable output variables. If { , we have

N
> b > b; ®))
n=1

Note that 4 denotes a vector of non-negative variables. Eq. (2) can
well define the environmental deregulation (i.e., reducing undesired
outputs will do nothing to other output variables).
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(2) Weak disposability: undesirable outputs in the framework of
Environment Production Technology (EPT) can be treated as
weak disposability. In detail, we must sacrifice the desirable
outputs in the production activities when cutting undesirable
outputs [61]. There are also two further assumptions regarding
weak disposability. (i) null-jointness for desirable and undesir-

(y,b) € P(x,e,k)

y=0ifb=0"

are the byproducts of desirable ones; (ii) single weak disposability

(y,b) € P(x,e,k)
2 €(0,1]

P(x, e, k), suggesting reducing both the undesirable outputs and
the desirable outputs is possible, whereas impossible to reduce
the undesirable output while keeping other output fixed. The
production set can be expressed as assuming strong disposability,
which is not covered for brevity. Then, the constraints of unde-
sirable outputs can be expressed as:

able outputs: { indicating undesirable outputs

for undesirable variable: if { , we have (1y,4b) €

N
> dibin =b; 3
n=1

Fig. 2 displays the related production activities. Assuming the lateral
axis represents the number of undesirable outputs while the vertical axis
indicates the number of desirable outputs. In Fig. 1, point BCD repre-
sents three DMUs, and the following disposability assumptions for
desirable & undesirable outputs can be concluded. (1) Strong dispos-
ability for both desirable & undesirable outputs: OFCBA holds the pro-
duction frontier for Decision-making unit B, indicating B can reduce
undesirable outputs to zero (i.e., point F) while keeping desirable output
fixed (i.e., environment deregulation). (2) Strong disposability for
desirable outputs and weak disposability for undesirable outputs:
ODCBA represents the production frontier for Decision-making units of
C, D. The reduction of undesirable outputs often necessitates a simul-
taneous reduction in desirable outputs. (i.e., the situation satisfies null-
jointness). In addition, point G € P(x, e, k) indicates weak disposability
(i.e., cut desirable & undesirable outputs simultaneously to point G).

The Bounded-adjusted Measure (BAM) employed in the paper will
consider undesirable outputs as special inputs through the constrain:

N
> b < by @
n=1

The constrain characterizes maximizing desirable outputs while

A

>
0 A b

Fig. 2. Illustration of disposability for desirable (F) & undesirable outputs (b).
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minimizing the undesirable outputs. Also, strong disposability is used
for desirable outputs. Generally, the PPS for output-oriented variables
can be characterized as:

M N
PSP — {(y, B); > Ayim > by, Y Ay <by} ©)
m=1 n=1

3.2.2. Disposability for inputs

The concept of disposability for input-oriented variables has not been
extensively explored in the literature, mainly due to the presumption
that disposability is consistent across all inputs [35,62]. Nonetheless,
contemporary research has started to delve into the policy ramifications
of varied disposability types, particularly natural disposability and
managerial disposability [63]. Natural disposability refers to the strat-
egy where a DMU mitigates undesirable outputs by reducing inputs,
while simultaneously striving to optimize the production of desirable
outputs. This can alternatively be described as a process where the DMU
economizes on input usage to decrease negative externalities and, in
doing so, enhances positive production outcomes:

P
Z ljxpj < Xj (6)
p=1

The concept of managerial disposability posits that through targeted
managerial practices, the efficiency of a specific DMU could be elevated.
This is achieved by concentrating efforts on the growth of inputs, such as
energy consumption, while also seeking to enhance the production of
desirable outputs. The mathematical representation of disposability can
be expressed as: fo,l/l]-xqj >x (7)

Fig. 3 provides a detailed illustration of the concept of natural and
managerial disposability for input-oriented variables. In the figure, arc
ABCD represents the frontier for undesirable outputs, while arc EFGH
represents the frontier for desirable outputs. Specifically, arc AB repre-
sents the frontier for undesirable outputs under the assumption of nat-
ural disposability, while arc BCD represents the frontier for desirable
outputs under the assumption of managerial disposability. When we set
the input-oriented variable assuming natural disposability, the Decision-
making Unit (DMU) j can transform x1 units of inputs into y1 units of
desirable outputs and bl units of undesirable outputs. However, by
reducing inputs from x1 to x2, the DMU j can decrease undesirable
outputs from bl to b4, but at the same time, it will also decrease
desirable outputs from y1 to y2. Natural disposability can be seen as a
negative response to environmental regulation, as it involves sacrificing
desirable outputs to reduce undesirable outputs. In contrast, under the
novel managerial disposability assumption, when the DMU j expands
inputs from x1 to x3, it can simultaneously reduce undesirable outputs
from bl to b2 and increase desirable outputs from yl to y4. This in-
dicates that managerial disposability allows for a positive response to
environmental regulation, as it enables the DMU to effectively control
and reduce undesirable outputs while maintaining or even increasing
desirable outputs in the long term.

Fig. 3 elucidates the concepts of natural and managerial disposability
as applied to input-oriented variables. The figure features arc ABCD,
depicting the frontier for undesirable outputs, and arc EFGH, delineating
the frontier for desirable outputs. Specifically, the segment AB of the arc
demarcates the undesirable output frontier under natural disposability,
while the segment BCD represents the desirable output frontier given
managerial disposability. With natural disposability assumed for the
input-oriented variable, DMU j, can convert x1 units of input into y1
units of desirable outputs alongside b1 units of undesirable outputs. If
this DMU reduces its inputs from x1 to x2, a correlation is observed: the
undesirable outputs decrease from bl to b4, while, concurrently, the
desirable outputs also decline from y1 to y2. Thus, natural disposability
is often viewed as a negative consequence of environmental regulation
due to the resultant trade-off in decreasing desirable outputs for the sake
of mitigating undesirable ones. Conversely, embracing the innovative
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Fig. 3. Illustration of disposability for input-oriented variables (natural & managerial disposability).

concept of managerial disposability, the same DMU j can expand its
inputs from x1 to x3. Notably, this expansion concurrently lessens the
undesirable outputs from bl to b2, whilst it escalates the desirable
outputs from y1 to y4. This outcome infers that managerial disposability
fosters a positive engagement with environmental regulation, empow-
ering the DMU to adeptly manage and curtail undesirable outputs
without sacrificing—and potentially even amplifying—desirable out-
puts over the long haul.

In conclusion, the framework incorporates managerial disposability
(with natural disposability assumed for other input-oriented variables)
specifically for energy and capital inputs. This approach enables the
simultaneous growth of desirable outputs and reduction of undesirable
outputs. This article considers these changes in production activities as
outcomes of managerial efforts. By adopting new technologies that
facilitate sustainable production, such as capital investments, firms can
achieve this desired direction of changes. This managerial disposability
allows for the optimization of resource allocation and the adoption of
environmentally friendly practices.:

. P Q Q
PpS™PY = {(xa e,k); Zpﬂljx}{i X, Zqzlljeﬂf <e, Zqzl'ljkij <kj, }

(®

3.3. Bounded-adjusted measure

The BAM emerges as a recent contribution to the spectrum of addi-
tive models in data envelopment analysis, delivering an all-
encompassing measure for inefficiencies. It captures all variables dis-
cerned by the model’s slacks, as affirmed by Ref. [17]. By integrating
lower input bounds with upper output bounds and accommodating any
imposed production technology returns to scale, the BAM ameliorates
the constraints of traditional DEA models. A principal benefit of the BAM
is its adept handling of variable returns to scale (VRS) with greater

adaptability than conventional models, which typically presuppose VRS.
Instead, the BAM acknowledges the scope for enhancement via a rudi-
mentary linear program, a perspective shared by Refs. [17,64], thus
facilitating a more precise efficiency evaluation and a truer production
process depiction. Moreover, the BAM rectifies certain DEA models’
shortcomings. For instance, the directional distance function measure
suggested by Ref. [65] falls short in pinpointing variable-specific in-
efficiencies, a gap bridged by the BAM’s comprehensive slacks exami-
nation. Concurrently, the Range-adjusted Measure, introduced by
Ref. [66], suffers from attenuated discrimination capability, an issue the
BAM adeptly manages through the integration of bounds, yielding a
notably enhanced inefficiency evaluation.

3.3.1. Basic BAM model

Let A represents a vector of non-negative variables. There are bounds
for inputs and outputs so that the minimum quantity of each input is the
lower bound for inputs and the maximum quantity of each output is the
upper bound [17]. Assume a particular DMU consumes P types of inputs
x = (x1, ..., X,) € RS, to produce Q types of outputs y = (1, ...,

Ym) € Rj;. The number of inputs and outputs is incorporated into (xj

yJ‘.), and the slack of inputs and outputs is incorporated into (S;f ,S%'n).

Hence, this article can characterize the production possibility set (PPS)
for the BAM-DEA assuming VRS as:

PPS = {(x,y) €R; X Ry : (x,~y) = A, =¥i), A > 05, > min(xy);

J
j=1
Ym < max(ym); Vi,p,m}
©)
Given technology defined by Eq. (1): the operational inefficiency for
a certain DMU can be obtained as follows:
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SES
p=17° m=1""m
max 10
P+ (10)

s.t.

1 1
prili +8; =X, Z}'miii =S = Ymis

i=1 i=1

1
Zﬂizlﬂliz(); VPJ"? S;S;VHZO

i=1

where >°}_, 4 = 1 indicates VRS. Note that any returns of scale can be
assumed in BAM model, see Ref. [17] for more details.

3.3.2. BAM model assuming managerial disposability

Assume a particular unit uses ordinary inputs of P types x = (x1,...,
Xp) € Ry; energy inputs of Q types e = (e1, -, eq) € R§; and capital in-
puts of Itypesk = (ki,...,k;) € R{. In the production plan, the inputs can
be transformed into M types of desirable outputs y = (y1,...,¥m) € Ri
and N types of undesirable outputs b = (b1, ..., by) € Rj;. In the t-th
period, the conventional input, energy use, capital stock, desirable
output and undesirable output quantities for the j-th DMU are arranged

into the vector (xj‘ ,e},k}, y;,b;), and their respective slack is incorporated

into the vector (S;,SZ,S?,S%,SZ) . According to subsection 2.2, this article

sets energy use and capital input into managerial disposability. As for
energy use, this article assumes using cleaner energy instead of coal, oil
and other fossil energy-related pollutant emissions. Turning to capital
stock, this can be explained that capital investment improves production
technology. Therefore, the BAM model assuming managerial dispos-
ability can be introduced as:

Pl Qg Loge Mo N
RS S a e S
p=1#40 " g=1 7 =1 1 ' m=1 ™ p=1" an
max
P+Q+I+M+N
J J J
S.t. ijﬂj + S; = xpj’, Z quj.j — SZ+ = eq,-/ Z kllj'} — Si‘* = ku’;
= j=1 j=1

j=1

J J J
D Yy = S5 = Yy D bk + 5] = by D Xpidy > min x5
=1

j=1 Jj=1

J J I
Z egilj < max ey, Z k4 < max k;j, Zymjﬂj < MAX Yryj;
=1 j=1 i=1

J
> " buyk; > minbyy; 4 > 0;¥p, q,i,m,n > 0; S5, S, S¢S, Sh > 0

p’Yq *%i “my“n
=1

Note that the vector (L;,Lﬁ) denotes gaps between the observed

values of conventional inputs and undesirable outputs and the lower
bounds of the corresponding variables. While that distance between the
observed values of the desirable outputs, energy and capital inputs and
the upper bounds of the corresponding variables are arranged into

vector (Ugﬂ Uk, U};) Specifically, the differences are characterized as

follows:

Ly =Xy —minxy,p € P,j € J;
Uy =maxeg —eg,q€Qj €J;

Ug,*:maxkijfk,»j/,iel,feJ; 12)
U,ynj, = MaX Yj — Ymy, M € M,j € J;

L), = by —minby,neN,j €J

As [17] pointed out, when the amount of the j-th conventional input
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equals its minimum level there will be no room for improvement, i.e.,
Xy = min(x,), we have $;*/L* = 0. Therefore, if we have:
Xpj = Min Xy
max eq,» = qu’
max ymj = Ymy
bnjf = min bnj

Then, the following relationships can be obtained:

57 /15 =0
sy /U; =0
S*/uk=0 as
SY/Uh =0
SP/Ik =0

3.3.3. Variable-specific decomposition

This study builds upon the components of the BAM model discussed
in the previous sections to further investigate the contribution of specific
variables to the overall operational inefficiency in an environmental
context. Specifically, we focus on the energy consumption and capital
inputs, which are maximized under the assumption of managerial
disposability, while conventional inputs are minimized assuming natu-
ral disposability. To assess the contribution of these variables, we
analyze the slacks, which represent the gaps between actual and optimal
energy and capital use under the respective disposability assumptions.
Insufficient or excessive energy and capital use are captured by the
slacks, reflecting the inefficiencies associated with the managerial or
natural disposability assumptions. Based on this analysis, this article
decomposes the overall operational inefficiency into its components,
following the framework established by Refs. [17,67]. This decompo-
sition allows us to quantify and evaluate the specific contributions of
energy consumption and capital inputs to the environmental total
operational inefficiency:

inefficiency relying on conventional inputs : [Ey, = ——+—— 1/

P+Q+I+M+N
(15)
2(2: Se+ Ue
ineffici lyi P (16)
inefficiency relying on energy use : IE, = PIQIIiMIN
1
> St /U
i=1,£0
inefficiency relying on capital inputs : [Fx=— 1 17
¥ relylng on capital np “prqii+MiN 17
M
%OS’Y" U,
m=1,
ineffici lyi irabl IE,=————
inefficiency relying on desirable outputs : IE, PrQiI+M+N
(18)
R
X s/
=140
inefficiency relying on undesirable outputs : [Fy=—— 1
yrelying P ""PTQ+I+M+N
(19)

3.4. The global variable-specific Malmquist Index

For better proceeding with the analysis of TUAs’ atmospheric
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environmental productivity level, in the production activities of indus-
trial sector, the energy uses (E), the labor force (L) and capital stock (K)
are regarded as inputs. Whereas the production value (Y) of the sector is
considered an expected outcomes, the SOz (S) and the dust (soot)
emissions (D) of the sector are taken as unexpected outputs. On this
basis, variable-specific components of inefficiency outlined in Egs. (15)—
(19) can be further broken down in terms of individual variables as
follows:

IE = IEg + IE;, + IEg + IEy + IEg + IEp (20)
IE IE
'x b

Based on the static inefficiencies according to BAM assuming
managerial disposabilty, this article further constructs a novel economy-
energy-environment productivity index (i.e., GVMI) for measuring the
dynamic setting. To begin with, we need to construct the global and
contemporaneous frontiers according to the data for a single time period
(i.e., one year) and the pooled data for the entire period under analysis,
respectively [68]. Thus, the inefficiency (IE) is presented in the two
forms, i.e., global inefficiency (GIE) and current inefficiency (CIE). Then,
the performance gap across the time periods is obtained by calculating
the variable-specific inefficiency scores (in terms of both the global &
contemporaneous frontier) of the adjacent time periods. What is more,
the corresponding efficiency can be obtained by:

GE,(t) =1 — GIE(t); CE.(t) =1 — CIE.(t) 1)

Different from the technology gap stated in Ref. [2] (e,
additive-based technical gap), the quotient between GE and CE com-
prises the technology ratio (TR). This research uses subscript index v to
denote the VRS estimators, whereas subscript index c relates to the CRS
estimators. Then, the relationship corresponding to the two measures
associated with the global and contemporaneous frontiers can be
defined as follows:

1-GIE(t)

TR0 =1 Grg () (22)
_1-GIE,(t)

TR =15 (5 (23)

Eq. (21) denotes the global and contemporaneous efficiency scores
based on the variable-specific inefficiencies. Under the assumption that
data for multiple time spans are available for a certain DMU, global
efficiency scores across different time periods (as measured against the
global technical frontier) can be compared to measure the environ-
mental total factor productivity in the framework of the global variable-
specific Malmquist index (GVMI). The GVMI be obtained by the product
of individual variables. For example, METFP = H(METFPe_k_x yb)

GE.(t+1) 1-GIE(t+1)

METFP,""! =
! GE.(t) 1-GIE(t) ’

(24)

The METFP:'! reflects the environmental productivity change across
adjacent years. The subscribe ¢ and v denotes constant and variable
returns to scale respectively. Then, TR and CIE comprise global variable-
specific Malmquist index (GVMI), namely efficiency change (ME-EC)
and technical progress (ME-TP):

GE.(t+1) CE.(t+1) GE(t+1)/CE(t+1)
METFP ! =— == =
© TTGE() | CE() | GE(D/CE(D)
N————
MEEC,”I METP[t“ (25)
_CEC(H-I)XTRE(H-I)
T CE() T TR
— ——
MEEC,+! METP,*+!

Note that TP:*! denotes the relative change of ratio between global
efficiency and contemptuous efficiency across adjacent years assuming
CRS technology. According to Egs. (22) and (23), TR represents the ratio
of the static efficiencies associated with the global and contemporaneous
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frontiers, representing the ratio between these two DEA technical
frontiers. Therefore, METP can also be obtained by comparing the
change of TR.

What is more, incorporating the VRS technology into the framework
allows performing further decomposition. Specifically, the Malmquist
environmental efficiency change (MEEC, also known as catch-up effects)
term can be further broken into Malmquist environmental pure effi-
ciency change (MEPEC, also known as pure catch-up effects) and
Malmquist environmental scale efficiency change (MESEC, also known
as scale catch-up effects). Furthermore, Malmquist environmental
technical progress (METP, also known as frontier movements) can be
further decomposed into Malmquist environmental pure technical
progress (MEPTP, also known as pure frontier movements) and technical
progress of scale change (GTPSC, also known as scale frontier move-
ments). Fig. 4 displays the detailed decomposition process. The under-
lying calculation process is presented below:

CE (t n 1) CE(t+1)
MEEC;" = MEPEC™ x MESEC;"! ==tp-o x T (26)
v
—— CEy(t)
MEPEC;"! MESEC:™!
TG (t+1)
TG,(t+1)  TG.(¢t)
t+1 _ t+1 t+1 v c
METP,""" = MEPTP,""" x METPSC," = TG0 X TGt + 1)
TGi,(t)
GE.(t+1)
—_— 27
CE.(t+1) 27)
GEE;,(t+ 1) GE(t)
_ GEE;,(t+1) CE(t)
" GEE,(t) GE,(t+1)
CEE;,(t) CE,(t+1)
MEPTP, 1 GEV (t)
CE,(t)
METPSC,+1

These indicators carry distinct theoretical meanings and provide
valuable insights into different aspects of energy conservation and
pollutant mitigation efficiency. Egs. (26) and (27) discuss each indicator
in more detail: MEEC (Malmquist Environmental Efficiency Change)
represents catch-up effects and measures the proximity to the produc-
tion frontier, METP (Malmquist Environmental Technological progress)
represents frontier movements. When MEEC is larger than 1, it indicates
progress in city-level energy-conservation and pollutant mitigation ef-
ficiency. Conversely, a value less than 1 indicates a decline in efficiency.

F ME-EC
ME-TFP
L ME-TP

Fig. 4. decomposition of Malmquist productivity index.

Notes: ME-TFP denotes the Malmquist environmental total productivity, GE-TP
is environmental technological progress, ME-EC represents Malmquist envi-
ronmental efficiency change, ME-PEC is environmental pure efficiency change,
MS-EC is the global environmental scale efficiency change, ME-PTP is the global
environmental pure technological progress, ME-TPSC is the environmental
technical progress of scale change.
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MEEC reflects the extent to which a city is approaching the optimal level
of energy efficiency and pollution reduction. METP greater than 1 sig-
nifies technological progress, indicating that the production frontier is
expanding. Alternatively, METP less than 1 denotes comparative tech-
nological regress, suggesting a deviation from the production frontier.
METP captures changes in overall productivity and reflects advance-
ments or setbacks in technology and practices. MEEC can be further
decomposed into two components: MEPEC (Malmquist Environmental
Pure Efficiency Change) and MESEC (Malmquist Environmental Scale
Efficiency Change). MEPEC captures efficiency changes for different
groups operating with various frontiers under variable returns to scale
assumptions. MEPEC greater than 1 indicates efficiency growth under
variable returns to scale assumptions, while a value less than 1 repre-
sents a decline. MESEC denotes the difference in efficiency change be-
tween constant returns to scale and variable returns to scale. MESEC
greater than 1 signifies efficiency growth from period t to t+1, while a
value less than 1 indicates a decline. MEPTP represents the technological
gap (efficiency under current frontier and global frontier) under the
variable returns to scale assumption. MEPTP>1 represents technological
progress under different frontiers (global and current) and decrease
otherwise. METPSC is the difference of technological gap between global
and current frontiers. METPSC>1 denotes technological progress across
t-t+1 and decline otherwise.

As the current research focuses on environmental performance, this
research decomposes the overall productivity change in Eq. (25) (and its
terms in Egs. (26) and (27)) regarding the input/output variables pre-
sented in Eq. (20). On this basis, one can identify the productivity
change relevant to energy consumption and capital stock or other var-
iables of interest.

4. Data and empirical analysis
4.1. Data

This study evaluates the environmental performance of cities on the
Chinese mainland by employing crucial input-oriented and output-
oriented variables. It concentrates on 45 cities comprising the TUAs
designated as DMUs. To appraise environmental performance, selected
variables encompass energy and capital employment, as well as air
pollution indicators. In particular, the industry sector’s primary envi-
ronmental pressures, such as SO, and dust (soot) emissions, are incor-
porated. These parameters facilitate the computation of inefficiency
scores and productivity shifts for TUA cities. Concerning input-oriented
variables, the investigation accounts for the labor force (L), capital stock
(K), and industrial energy intake (E), reflecting the resources and inputs
engaged in the industrial ambit. Output variables treat sectoral pro-
duction value (Y) as a positive outcome, emblematic of the economic
yield from industrial undertakings. Conversely, SO5 (S) and dust (soot)
emissions (D) are treated as negative outputs, denoting the environ-
mental toll of industrial operations - specifically air quality degradation.
The simultaneous consideration of favorable and unfavorable outputs
underscores the economic-environmental nexus, encapsulating the
balancing act between industrial output and environmental integrity. In
2012, the Chinese Central Authority promulgated the Prevention of Air
Pollution in Key Regions, which clustered thirteen key areas for pre-
venting and controlling air pollution. Spatially, this article clusters main
TUAs cities (39 cities) into four groups in terms of administrative area
and geographical proximity for illustration purposes, including North
China urban agglomeration (NCUA), Yangtze River Delta urban ag-
glomerations (YRDA) and Pearl River Delta urban agglomerations
(PRDA) and Northwest urban agglomeration (NUA) in turn. To provide a
concise presentation of the cities included in the thirteen key areas and
four urban agglomerations, the specific details can be found in Appendix
A of the Supplementary materials.

The data utilized in this study covers the period from 2006 to 2016
(panel data). The results presented herein are reflective of the period
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from 2006 to 2016. This interval is commensurate with the most recent
data accessible from official governmental records. The sources of the
data include the China City-level Statistical Yearbook for variables such
as pollutant emissions, labor force, production value in the industrial
sector. Energy consumption data for the industrial sector is obtained
from either the Statistical Yearbook of the respective city or the website
of the City Statistics Bureau. It is important to note that there is a special
treatment required for the capital stock variable. In this study, the
province-level industrial capital stock is estimated using the perpetual
inventory method, as proposed by Ref. [69]. This estimation method
allows for the approximation of the capital stock at the provincial level.
To allocate the capital stock to the corresponding city, it is distributed
based on the production value share of the industrial sector in each city.
To ensure consistency, the study deflated both the capital stock and
production values of individual cities to constant 2000 prices. This
adjustment is made to account for inflation, enabling meaningful com-
parisons over time. By utilizing these data sources and applying
appropriate methodologies for capital stock estimation and deflation,
the study aims to provide accurate and reliable insights into the rela-
tionship between various variables and environmental performance in
the selected cities.

Summary statistics for the inputs/outputs during the sample period
are presented in Table 1. In 2016, on average, the industrial sector of 45
key cities used 35.31 million tons of standard coal energy, 0.59 million
adult employees, and 32.99 million CNY capital to produce 1112.30
billion CNY outputs, together with 3.87 million tons SO and 3.96
million tons NOx.

4.2. BAM inefficiencies

4.2.1. BAM inefficiencies assuming managerial disposability

The BAM model, described in Equations (11)-(20), was used to
calculate the industrial atmospheric environmental inefficiency values
for 45 cities in TUAs over the time of 2006-2016. Fig. 5 illustrates the
average scores of GIE for the four urban agglomeration groups and the
45 cities in TUAs, assuming the use of VRS (Variable Returns to Scale)
technology. For brevity, this article only reports results and analysis
under VRS technology, unless noted otherwise.

Fig. 5 presents the average GIE scores across 2006-2016 in TUAs
cities and its principal urban agglomerations. Inefficiency scores asso-
ciated with the TUAs industrial production value (Y, as measured by
GDP) is 0.01. According to the additive model assuming managerial
disposability, there is limited potential for further growth in production
value, considering the current levels of energy use, capital investments,
as well as SO, and dust (soot) emissions from the industrial sector.
Therefore, the focus is on prioritizing structural adjustments, such as
increasing the use of cleaner energy sources and advanced technologies,
rather than pursuing extensive growth or reducing inputs. Compara-
tively lower inefficiency scores are observed for industrial capital stock
(K) and the labor force (L). Analyzing the capital stock, with a GIE of
0.02 assuming technically managerial disposability, there is evidence of
an advanced and reasonable investment pattern in the industrial sector,
although there is still room for improvement. As for the industrial labor
force, a GIE of 0.03 suggests that there is excess or redundant labor in the
industrial sector. The average levels of SOy emissions (S), dust (soot)
emissions (D), and energy use (E) are 0.04, 0.11, and 0.08, respectively,
which are relatively high. These three factors together contribute to a
total of 0.23 inefficiency score, accounting for 79.31 % of the overall
inefficiencies of 0.29. This indicates a significant potential for reducing
emissions and introducing cleaner energy inputs in the cities of TUAs.
Under the natural disposability assumption, energy conservation per-
formance can be concluded, whereas the performance of advanced
technologies and cleaner energy inputs can be obtained assuming
managerial disposability. The highest inefficiency scores observed for
sulfur dioxide emissions (0.11) may be attributed to lagged policy in
China. China has not put regulations on sulfur dioxide emissions until
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Table 1
Summary statistics for selected years across 2006-2016.

Variable Year Notation Unit Max Min Mean S.D

Input

Industrial energy use 2006 E Million tons standard coal 82.07 4.58 27.57 21.35
2010 119.53 6.06 34.73 28.10
2016 144.89 4.20 35.31 31.31

Industrial labor force 2006 L Million active adults 1.23 0.05 0.39 0.28
2010 1.46 0.08 0.45 0.31
2016 2.36 0.11 0.59 0.53

Capital 2006 K Million CNY 58.33 1.82 12.47 11.51
2010 83.17 5.46 23.44 17.53
2016 88.53 0.31 32.99 20.93

Output

Industrial SO2 emissions 2006 S Million tons 0.37 4.23 0.13 0.08
2010 0.50 3.23 0.11 0.09
2016 0.17 0.00 0.04 0.04

Industrial dust (soot) emissions 2006 D Million tons 0.14 0.00 0.04 0.03
2010 0.10 0.00 0.03 0.02
2016 0.45 0.00 0.04 0.07

Industrial production 2006 Y Billion CNY 1846.24 70.00 413.95 381.34
2010 3016.24 149.13 756.56 622.43
2016 3340.08 161.49 1112.30 810.80

Notes: The summary statistics in this table are based on a balanced panel of 45 China’s cities covering 2006, 2010 and 2016 (total sample size = 473).

Fig. 5. the average GIE scores across 2006-2016 in TUAs cities.
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Notes: The left map shows the total GIE, and the right figure shows the GIE scores associated with individual variables.

2006.

Regarding regional variations, the environmental inefficiency scores
related to energy use and pollutant emissions exhibit discrepancies
across the cities in the TUAs from 2006 to 2016. Specifically, Ji’'Nan,
located in NCUA, Hangzhou, and Jiaxing (YRDA), as well as Chongqing
and Chengdu in southwest China, have comparatively high inefficiency
scores of 0.40, 0.40, 0.47, and 0.41 respectively. To be more specific,
Taiyuan has the highest inefficiency score for energy use (0.12), fol-
lowed by Xi’an and Jiaxing (both 0.11). These cities, when considering
managerial disposability for energy use, have potential for adopting
advanced technologies and promoting cleaner energy sources. Hang-
zhou shows the highest inefficiency scores for SO, and dust (soot)
emissions (0.15 and 0.13 respectively), followed by Wuxi and Shenyang
(0.14 and 0.13 respectively). Higher inefficiency scores for the labor
force can be observed in Shanghai and Chongqing (both 0.11). Thus, it is
crucial for these cities to prioritize the elimination of outdated industrial
capacity. It is worth noting that Shenzhen, as one of the first-tier cities,
has the lowest inefficiency score (0.08). This indicates that the city has
successfully coordinated the integration of cleaner energy inputs, tech-
nology upgrades and pollutant emission reduction. By comparison, first-
tier cities Beijing and Shanghai have demonstrated limited progress in
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implementing energy conservation and pollution reduction measures
within the sector. Their inefficiency scores remain relatively high at 0.36
and 0.32 respectively. Accordingly, upgrading technologies and tran-
sitioning to less polluting energy sources are necessary steps to address
these inefficiencies.

Based on the urban agglomeration clusters discussed in Section 4.1,
this article conducted further analysis of the disparities in inefficiencies
related to energy use and environmental variables. Fig. 6 presents a line
chart illustrating the inefficiency disparities of six variables across four
urban agglomerations from 2006 to 2016. Among these agglomerations,
PRDA demonstrates the best performance across all energy and envi-
ronmental variables, while NCUA exhibits the worst performance. It is
important to note that the distribution pattern of inefficiencies closely
resembles that of energy use, industrial production, and industrial
pollutant emissions. However, there are variations in the inefficiencies
related to the industrial labor force. This suggests a higher level of
redundancy in the industrial labor force within NCUA and NUA, with
inefficiency scores of 0.05 and 0.07 respectively.
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Fig. 6. Inefficiency disparities of six variables in four urban agglomerations,
2006-2016.

Notes: The left map indicates the total GIE, and the right shows the GIE scores
associated with individual variables. GIE: global inefficiency. D: Industrial dust
(soot) emissions; S: Industrial SO, emissions; Y: Industrial production; L: In-
dustrial labor force; K: Capital stock; E: Industrial energy use.

4.3. Environmental productivity

4.3.1. Variable-specific environmental productivity decomposition of global
Malmgquist Index

Using Egs. (21)-(26), the productivity change can be estimated.
Table 2 shows the environment productivity performance in TUAs cities
of China from 2006 to 2016 per annum. The global Malmquist index
allows for the decomposition of environmental productivity change into
individual variables.

The country-level analysis, represented by the geometric mean in
Table 2, demonstrates that between 2006 and 2016, the environmental
productivity gain reached 2.6 % per annum. Specifically, the geometric
mean for energy consumption and pollutant emissions was 1.8 % (with
0.8 % attributed to other variables), revealing that environmental fac-
tors accounted for 69.2 % of the total productivity increase. A note-
worthy aspect is the distinct contribution of SOy emissions at 0.9 % to
productivity enhancement, resonating with the observed high Growth
Index of Environmental Productivity (GIE) scores, signifying enhanced
improvement prospects. The compulsory SO, reduction directives
enacted since 2006 have ostensibly been instrumental in achieving these
results. In contrast, the higher inefficiency linked with industrial dust
(soot) emissions underscores the existing scope for refinement, although
their influence on productivity alteration is negligible when juxtaposed
with industrial SO,. The rapid rise in dust (soot) emissions during the
11th Five-Year Plan period, predominantly from the burgeoning of
small-scale industrial ventures, accounts for this. Nevertheless, the
absence of stringent regulations for dust (soot) has stunted productivity
advancements in subsequent phases. It is vital to isolate the origins of
these outcomes to inform efficacious policy interventions. Lastly,
regarding production values, the latitude for enhancement in production
amplification is restrained. Its impact on productivity has demonstrated
minimal fluctuation. Ascertain the contributory factors to this consis-
tency is imperative in devising policies that maximize efficiency.

When analyzing productivity change at the regional level, distinct
patterns can be observed. Negative productivity change is evident in
Dongguan (—2.0 %), Suzhou (—1.9 %), Foshan (—1.1 %), and Wuxi
(—0.2 %). It is worth noting that their poor performance is primarily
attributed to their industrial energy use and industrial capital inputs,
with scores of —2.0 % for Dongguan, 0.0 % for Suzhou, —2.0 % for
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Table 2
the average GE-TFP values for TUAs cities, 2006-2016.
City (region) GE- E K L Y S D
TFP*
Beijing 1.049 1.001 1.014 1.000 1.009 1.017 1.008
Tianjin 1.017 1.017 1.000 1.001 0.991 1.008 1.000
Shijiazhuang 1.045 1.016 1.006 1.005 1.001 1.014 1.003
Tangshan 1.018 1.000 1.006 1.002 1.001 1.014 0.996
Baoding 1.020 1.000 1.000 1.010 1.000 1.002 1.007
Langfang 1.001 1.001 1.001 0.995 1.000 1.002 1.002
Taiyuan 1.053 1.018 1.006 1.006 1.001 1.011 1.009
Shenyang 1.014 1.000 1.000 1.004 1.000 1.004 1.006
Shanghai 1.039 1.000 1.018 0.997 1.018 1.012 0.992
Nanjing 1.051 1.018 1.006 1.006 1.000 1.012 1.008
Wuxi 0.998 1.000 0.991 1.000 0.999 1.009 1.000
Changzhou 1.031 1.000 1.000 1.012 1.000 1.016 1.003
Suzhou 0.987 1.000 1.000 0.994 0.989 1.005 0.999
Nantong 1.034 1.000 0.998 1.015 1.000 1.006 1.015
Yangzhou 1.053 1.000 1.000 1.018 1.000 1.018 1.016
Zhenjiang 1.039 1.000 1.000 1.018 1.000 1.013 1.007
Taizhou 1.054 1.000 1.000 1.018 1.000 1.018 1.016
Hangzhou 1.011 1.018 1.002 1.007 0.999 0.994 0.991
Ningbo 1.025 1.009 0.998 1.004 1.000 1.014 1.000
Jiaxing 1.016 1.012 1.002 1.010 1.000 0.996 0.995
Huzhou 1.014 1.000 1.000 1.011 1.000 1.001 1.002
Shaoxing 1.019 1.000 1.000 1.012 1.000 1.002 1.005
Fuzhou 1.013 1.000 0.998 1.012 1.000 1.003 1.000
Ji’'Nan 1.008 1.000 1.000 1.006 1.000 1.004 0.998
Qingdao 1.053 1.018 1.016 1.000 1.008 1.010 1.000
Zibo 1.020 1.000 0.996 1.005 1.000 1.014 1.004
Weifang 1.036 1.000 1.001 1.014 1.000 1.017 1.003
Rizhao 1.012 1.000 1.000 1.007 1.000 1.006 0.999
Wuhan 1.034 1.018 1.002 1.010 1.000 1.010 0.994
Changsha 1.056 1.001 1.000 1.018 1.000 1.018 1.018
Guangzhou 1.047 1.000 1.002 1.010 1.000 1.018 1.016
Shenzhen 1.028 1.000 1.001 1.000 1.002 1.017 1.009
Zhuhai 1.026 1.000 0.999 1.007 1.000 1.018 1.002
Foshan 0.989 0.998 0.982 1.005 0.992 1.006 1.006
Jiangmen 1.012 1.000 1.000 1.009 1.000 1.000 1.003
Zhaoging 1.012 1.000 1.001 1.008 1.000 1.001 1.002
Huizhou 1.023 1.000 0.997 1.008 1.000 1.010 1.008
Dongguan 0.980 0.998 0.982 1.018 0.984 0.995 1.004
Chongqing 1.006 1.000 1.000 1.006 1.003 0.996 1.000
Chengdu 1.026 1.010 1.002 1.013 0.994 0.999 1.007
Xi’An 1.055 1.003 1.000 1.018 1.000 1.017 1.016
Xianyang 1.044 1.004 1.001 1.010 1.000 1.013 1.015
Lanzhou 1.022 1.000 1.000 1.007 1.000 1.009 1.005
Yinchuan 1.054 1.000 1.000 1.018 1.000 1.018 1.016
Urumgqi 1.055 1.002 1.000 1.018 1.000 1.017 1.016
Geometric 1.026 1.004 1.001 1.008 1.000 1.009 1.005
mean

NCUA 1.028 1.006 1.004 1.004 1.001 1.010 1.002
YRDA 1.026 1.004 1.001 1.009 1.000 1.008 1.004
PRDA 1.015 1.000 0.995 1.008 0.997 1.008 1.006
NUA 1.046 1.002 1.000 1.014 1.000 1.015 1.014

# Noteworthy, the overall GE-TFP is obtained from the production values of
individual variables and then averaged. In addition, GE-TFP>1 (GE-TFP<1)
indicates productivity growth (decline).

Foshan, and —0.9 % for Wuxi, respectively. Therefore, considering the
managerial disposability for energy (E) and capital (K), promoting
cleaner energy sources and adjusting investment structure will play a
crucial role in enhancing productivity in these regions. Additionally,
stricter regulations should be imposed on sulfur emissions (S) in Dong-
guan (—0.5 %). Conversely, the highest productivity growth is observed
in Changsha (5.6 %), Urumgqi (5.5 %), Xi’An (5.5 %), Taizhou (5.4 %),
and Yinchuan (5.4 %). Importantly, the contribution of industrial energy
use to overall productivity growth remains relatively stagnant in these
cities, with scores of 0.3 % for Xi’An, 0.2 % for Urumqi, 0.1 % for
Changsha, 0.0 % for Taizhou, and 0.0 % for Yinchuan. By comparison,
SO, and dust (soot) emissions make substantial contributions to overall
productivity growth, with scores of 3.6 % for S and D in Changsha, 3.4 %
for S and D in both Taizhou and Yinchuan, and 3.3 % for both Xi’An and
Urumgqi. Therefore, policy options should prioritize addressing
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industrial energy use variables to further enhance productivity gains.

Region-wise, different patterns in the overall productivity change
can be found. For example, negative productivity change is observed for
Dongguan (—2,0 %), Suzhou (—1.9 %), Foshan (—1.1 %), and Wuxi
(—0.2 %). Note that their worse performance is associated with their
industrial energy use and industrial capital inputs (—2.0 %, 0.0 %, —2.0
% and —0.9 % for Dongguan, Suzhou, Foshan and Wuxi resp.). Thus,
considering the setting of managerial disposability for the E and K, the
promotion of further cleaner energy and investment structure adjust-
ment plays a leading role in their productivity gains. Also, S for Dong-
guan (—0.5 %) should receive further stringer regulations. On the
contrary, the highest productivity growth is observed for Changsha (5.6
%), Urumqi (5.5 %), Xi’An (5.5 %), Taizhou (5.4 %) and Yinchuan (5.4
%). Noteworthy, the contribution of industrial energy use to the overall
productivity growth remains stagnant in the cities (0.3 %, 0.2 %, 0.1 %,
0.0 % and 0.0 % for Xi’An, Urumgqi, Changsha, Taizhou and Yinchuan
resp.). In contrast, industrial SO, emissions and industrial dust (soot)
emissions contribute most to the overall productivity growth (3.6 % for
S and D in Changsha, 3.4 % for S and D in both Taizhou and Yinchuan for
S and D, 3.3 % for both Xi’An and Urumgi, resp.). Therefore, policy
options should be partial to industrial energy use variables in the latter
direction for further gains.

Further on, certain differences can be observed. For example, the
highest productivity growth is found in NUA (4.6 %), whereas smooth
productivity change is observed in PRDA (1.5 %). The productivity
changes relevant to industrial energy use in NCUA and YRDA is 0.6 %
and 0.4 % resp., which exceeds that in PRDA and NUA (0.0 % and 0.2 %
resp.). The productivity change associated with industrial dust (soot)
emissions in NCUA is 0.2 %, much lower than other urban agglomera-
tions. Thus, due attention to these variables is urgent for policy regu-
lations. Note that NUA has comparatively lower efficiency scores and
substantial productivity gains, whereas PRDA holds relatively higher
efficiency scores and slower productivity change (0.72 and 4.6 % for
NUA resp.; 0.76 and 1.5 % for PRDA resp.). Efficiency scores is obtained
from 1-IE.

4.3.2. Variable-specific decomposition of environmental efficiency change
and technological change

The productivity change under the GVMI framework is further
broken down concerning its sources, i.e., efficiency change (GE-EC) and
technical progress (GE-TP) effects. This analysis allows us to identify the
key factors driving environmental productivity change across cities in
mainland China’s TUAs. To uncover these driving factors, this article
employs the decomposition method outlined in Eq. (24). Figs. 7 and 8
display the average annual productivity growth rates resulting from
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efficiency change and technical progress, and further attribute this
growth to individual variables.

The average annual MEEC (Malmquist Environmental Efficiency
Change) for the TUAs cities from 2006 to 2016 is —0.2 %. However,
when considering the MEEC associated with two environmental vari-
ables, it is observed to be 0.2 %. This indicates that efficiency gaps,
particularly in pollutant emissions, tend to shrink over time. Therefore,
the catch-up effects observed in these cities are primarily driven by
improvements in pollutant emissions inefficiency. Conversely, the
negative efficiency changes related to energy use and capital stock, both
at —0.2 %, suggest that backward industrial capacity has significantly
hindered overall growth. Among the cities analyzed, Suzhou (—6.4 %),
Dongguan (—5.5 %), Foshan (—4.5 %), and Wuxi (—4.4 %) exhibit the
highest decline rates. The decline in MEEC in these cities can be
attributed to both industrial energy use and pollutant emissions, with
scores of —2.8 %, —2.2 %, —2.0 %, and —1.3 % for Suzhou, Dongguan,
Foshan, and Wuxi, respectively. In contrast, Xi’An (4.7 %), Qingdao (4.3
%), Changsha (4.3 %), and Guangzhou (4.0 %) demonstrate relatively
robust annual gains in MEC. These cities have successfully improved the
use of cleaner energy in their industries, enhanced environmental per-
formance, and eliminated backward industrial capacity. When consid-
ering urban agglomerations, minor gains in technical MEEC are
observed for NCUA (0.1 %), while significant gains are observed for
NUA (0.8 %). However, both YRDA and PRDA experience a steep decline
in technical efficiency, with scores of —0.8 % for both regions. Notably,
substantial gains in technical efficiency change related to the two
environmental variables are observed for NCUA (0.2 % for S and D) and
NUA (0.4 % for S and D). However, industrial energy use in NCUA (-0.1
%) and PRDA (—0.4 %) hampers the overall growth of MEEC.

The average annual technical progress associated with the industrial
energy use, industrial capital inputs, industrial labor force, industrial
production and industrial environmental pollution are 2.9 %. This in-
dicates productivity gains (2.6 %) are mainly driven by technical
progress. Frontier shifts relevant to industrial energy use, industrial
labor force, and industrial sulfur dioxide emissions contribute to overall
environmental technological growth by 1.7 %. Though significant dif-
ferences exist among all input-oriented and output-oriented variables,
their frontier movements contribute to the gains of overall technical
progress. Mild growth in technical progress is observed for Zhuhai (0.6
%), whereas Shanghai (7.8 %), Lanzhou (6.1 %), Suzhou (5.5 %) and
Urumdi (5.5 %) enjoy the highest levels of frontier shifts. Specifically, E,
K and Y in Shanghai (both 2.0 %), Y, S and D in Lanzhou (2.5 %, 1.8 %
and 1.6 % resp.), K, S and E in Yinchuan (1.8 %, 1.4 % and 1.3 % resp.)
and K, S and D in Urumqi (1.8 %, 1.7 % and 1.6 % resp.) contribute most
the overall technical progress. As for four urban agglomerations,
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Fig. 7. the average efficiency change (GE-EC) across 20062016 in TUAs cities.

Notes: The left map presents the total GEC, and the right figure shows the GEC scores associated with individual variables.
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Fig. 8. the average environmental technological progress (TP) across 2006-2016 in TUAs cities.
Notes: The left map presents the total GTP, and the right figure shows the GTP scores associated with individual variables.

positive technical progress prevails through disparities. The NUA dem-
onstrates the highest environmental productivity growth at 3.8 % per
annum, closely followed by the YRDA at 3.5 % per annum. In contrast,
the NCUA and PRDA exhibit only marginal technological progress, with
rates of 2.6 % and 2.2 % per annum, respectively. Specifically, the
contribution to the overall technical progress of E in NCUA (0.7 %) and
YRDA (0.9 %), S for NUCA, YRDA, PRDA and NUA (0.8 %, 1.1 %, 0.8 %
and 1.1 % resp.) is prominent. Lower values of MTP associated with
industrial dust (soot) emissions are observed, which corresponds to the
lack of regulations for practically mitigating dust emissions.

4.4. Source control or end-of-pipe control

The assumption of managerial disposability permits the decomposi-
tion of productivity into different sources, including industrial energy
consumption and capital inputs (E and K), as well as pollutant emission
variables (S and D). Recognizing the significant role of S and D in driving
productivity change, along with the managerial setting of E and K, it is
essential to identify the most effective channels through which cities can
enhance their efficiency and productivity. Therefore, we focus on
comparing the contributions associated with energy consumption (E)
and capital input (K) from an input perspective, and emissions-related
variables (S and D) from an output perspective to devise the most
effective strategies for promoting efficiency and productivity in these
cities. Table 3 provides a detailed classification of the results. Regions I
and II demonstrate productivity gains in selected input-oriented

Table 3
Classification of 45 TUAs cities across 2006-2016.
Type Description Region
1 METFP; x METFPy > Tianjin, Shijiazhuang, Taiyuan,
METFPs x METFPp > 1 Shanghai, Nanjing, Qingdao, Wuhan and
Chengdu (8 cities)
I 1 < METFP; x METFPy < Beijing, Tangshan, Langfang, Ningbo,
METFPs x METFPp, Weifang, Changsha, Guangzhou,
Shenzhen, Zhaoqing, Xi’An, Xianyang
and Urumaqi (12 cities)
il METFP; x METFPg > 1 Huangzhou and Jiaxing (2 cities)
METFPs x METFPp <1
v METFPg x METFPg <1 Baoding, Nantong, Shenyang, Wuxi,
METFPs x METFPp > 1 Changzhou, Suzhou, Yangzhou,
Taizhou, Shaoxing, Fuzhou, Huzhou,
Ji’Nan, Zibo, Rizhao, Zhuhai, Foshan,
Jiangmen, Huizhou, Lanzhou Yinchuan
and Zhenjiang (21 cities)
A METFPg x METFPg < 1 Dongguan and Chonggqing (2 cities)

METFPs x METFPp <1
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variables (E and K) and output-oriented variables (S and D). In region I,
the productivity growth associated with E and K exceeds that of S and D.
Consequently, long-term efforts should prioritize emission reduction
and end-of-pipe control. Conversely, in region II, authorities should
prioritize cleaner energy promotion and strengthen source control pol-
icies. Region III shows positive productivity gains in E and K, while
negative productivity gains are observed for S and D. Therefore, cleaner
energy promotion has performed better than emission reduction in this
region. Strict implementation of end-of-pipe treatment is necessary. In
contrast, region IV exhibits negative (or zero) productivity gains in E and
K, but positive productivity gains in S and D. Thus, it is crucial to focus
on preventing, curbing, and controlling air pollution in this region.
Region V stands out with negative (or zero) productivity gains in both E
and K. Cities in this region require a win-win strategy that promotes
cleaner energy and reduces emissions simultaneously.

5. Robustness

Due to the presence of various alternative production technologies
and the selections for pollutant emissions, these estimates may be sub-
ject to bias. To address this concern, this work have devised two alter-
native strategies to verify the robustness of the article. First, this work
has taken a separate approach to analyze the emissions of SO,, dust
(soot), and CO; individually. Further, this article simultaneously con-
siders these pollutant emissions as undesirable outputs to compare the
results. By considering these pollutants as outputs, this work aims to
assess the reasonableness of the output variables selected in the baseline
estimates. Additionally, in response to the suggestion provided by the
reviewer, this article has incorporated more recent approaches for
measuring environmental efficiency. Specifically, this work has
employed the by-production technology to test the robustness of the
BAM model, assuming managerial disposability.

5.1. Alternative outputs selection

This work presents four alternative specifications for assessing the
robustness of findings in this article, as summarized in Table 4. In col-
umns (1) and (2), this research focuses on SO, emissions as the sole
undesirable output. Column (1) reports the environmental inefficiency,
while column (2) provides the ranking for the overall GIE. To maintain
conciseness, this article presents the overall GIE scores in main text,
while the inefficiencies for individual variables are provided in the
Online Appendix F. Columns (3) and (4) examine dust (soot) emissions
as the undesirable output, with column (3) displaying the GIE and col-
umn (4) presenting its corresponding ranking. Similarly, columns (5)
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Table 4
the average GIE values for TUAs cities using various undesirable outputs, 2006-2016.
City S Rank D Rank C Rank SDC Rank
1 2 3 4 5 6 7 8
Beijing 0.34 35 0.28 26 0.39 38 0.40 28
Tianjin 0.37 37 0.27 24 0.40 41 0.48 40
Shijiazhuang 0.27 15 0.25 19 0.34 27 0.47 37
Tangshan 0.23 10 0.12 2 0.05 3 0.04 2
Baoding 0.33 34 0.34 40 0.27 18 0.38 24
Langfang 0.15 2 0.24 17 0.28 22 0.32 18
Taiyuan 0.32 31 0.34 41 0.01 1 0.04 1
Shenyang 0.31 27 0.32 35 0.43 44 0.54 45
Shanghai 0.44 44 0.30 32 0.39 37 0.35 23
Nanjing 0.27 16 0.19 6 0.27 20 0.28 15
Wuxi 0.28 20 0.25 20 0.43 43 0.52 44
Changzhou 0.16 4 0.30 31 0.43 42 0.51 43
Suzhou 0.29 22 0.14 4 0.35 29 0.32 16
Nantong 0.27 17 0.28 27 0.40 40 0.50 41
Yangzhou 0.21 8 0.20 7 0.39 36 0.42 34
Zhenjiang 0.25 13 0.28 28 0.35 30 0.42 35
Taizhou 0.17 6 0.23 13 0.36 31 0.40 30
Hangzhou 0.37 38 0.31 33 0.38 35 0.46 36
Ningbo 0.31 26 0.13 3 0.27 17 0.18 9
Jiaxing 0.39 41 0.32 38 0.24 15 0.33 20
Huzhou 0.28 21 0.33 39 0.26 16 0.33 19
Shaoxing 0.29 24 0.28 25 0.39 39 0.48 39
Fuzhou 0.38 39 0.32 36 0.28 21 0.40 29
Ji’Nan 0.35 36 0.36 44 0.23 14 0.34 21
Qingdao 0.32 32 0.24 18 0.36 32 0.40 31
Zibo 0.31 29 0.21 8 0.30 23 0.41 32
Weifang 0.27 18 0.23 16 0.37 34 0.47 38
Rizhao 0.15 3 0.22 11 0.15 7 0.13 7
Wuhan 0.32 30 0.23 15 0.36 33 0.42 33
Changsha 0.26 14 0.27 23 0.32 26 0.39 27
Guangzhou 0.39 43 0.26 21 0.35 28 0.38 25
Shenzhen 0.23 9 0.06 1 0.27 19 0.12 6
Zhuhai 0.30 25 0.26 22 0.07 4 0.11 5
Foshan 0.25 12 0.23 14 0.44 45 0.51 42
Jiangmen 0.33 33 0.31 34 0.18 12 0.23 11
Zhaoging 0.17 5 0.34 42 0.13 6 0.14 8
Huizhou 0.31 28 0.18 5 0.09 5 0.05 4
Dongguan 0.24 11 0.22 12 0.30 24 0.32 17
Chongging 0.49 45 0.40 45 0.15 8 0.25 13
Chengdu 0.39 42 0.34 43 0.31 25 0.39 26
Xi’An 0.38 40 0.32 37 0.17 9 0.20 10
Xianyang 0.27 19 0.29 30 0.17 10 0.28 14
Lanzhou 0.29 23 0.28 29 0.18 11 0.25 12
Yinchuan 0.14 1 0.21 9 0.02 2 0.05 3
Urumgqi 0.20 7 0.21 10 0.20 13 0.34 22
Correlation 0.81 0.85 0.81 0.77 0.17 0.14 0.39 0.27

and (6) consider CO5 emissions as the undesirable output, with column
(5) showing the GIE and column (6) indicating its ranking. When all
three emissions are treated as undesirable outputs, the GIE scores are
reported in column (7), while column (8) introduces their respective
rankings. In the last row of the table, this article provides the correlation
coefficient, comparing it with baseline GIE and its ranking. These results
demonstrate the robustness and comparability of estimates across the
various alternative specifications.

5.2. The by-production technology

The measurement of environmental efficiency in this paper is based
on the premise that bad outputs are treated as inputs. However, there are
more recent approaches for the measurement of environmental effi-
ciency, such as the by-production model [18,70]. To verify whether
these results are robust against more advanced approaches, Table 5
compares the inefficiency scores between natural/managerial produc-
tion technology (Column 1) and by-production technology (Column 3).
Their rankings for each city are provided in Column 2 and 4, respec-
tively. For brevity, this article does not report detailed formulas, which
can be found in Ref. [70]. The difference lies in that they employ
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directional function while the BAM is employed in this article. The
correlation coefficients for both inefficiency scores and rankings are
comparable, indicating that the by-production technology also adds
credibility to this article.

6. Conclusion and policy implications
6.1. Conclusion

This paper leverages the advantages of disposability in relation to
input-oriented and output-oriented variables and applies appropriate
disposability to individual variables. Additionally, this research in-
troduces a global Malmquist variable-specific index (GMVI) based on the
additive BAM model. Empirically, this study analyzes the environmental
performance of 45 cities in TUAs from 2006 to 2016. Environmental
inefficiency scores and productivity changes are computed for individ-
ual variables. Decomposition analysis for the environmental produc-
tivity growth is conducted to identify the effective regulatory pathways
for TUAs cities, specifically in terms of source control or end-of-pipe
control. The BAM approach discloses that from 2006 to 2016, the pre-
dominant contributors to inefficiency in TUAs cities were industrial
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Table 5
the average GIE values for TUAs cities using various production technologies,
2006-2016.

City Baseline-VRS Rank By-production VRS Rank
1 2 3 4
Beijing 0.36 37 0.22 33
Tianjin 0.34 34 0.11 21
Shijiazhuang 0.31 25 0.26 36
Tangshan 0.15 3 0.34 40
Baoding 0.36 38 0.26 37
Langfang 0.18 5 0.05 15
Taiyuan 0.38 40 0.61 45
Shenyang 0.36 36 0.22 32
Shanghai 0.32 27 0.00 1
Nanjing 0.28 17 0.15 28
Wuxi 0.32 28 0.11 22
Changzhou 0.24 12 0.02 9
Suzhou 0.21 8 0.04 13
Nantong 0.32 30 0.09 19
Yangzhou 0.20 7 0.03 11
Zhenjiang 0.29 18 0.08 17
Taizhou 0.20 6 0.03 10
Hangzhou 0.40 43 0.21 30
Ningbo 0.22 9 0.20 29
Jiaxing 0.40 42 0.24 35
Huzhou 0.30 23 0.08 18
Shaoxing 0.34 33 0.12 24
Fuzhou 0.37 39 0.11 20
Ji'Nan 0.40 44 0.21 31
Qingdao 0.33 32 0.13 25
Zibo 0.29 19 0.14 26
Weifang 0.29 20 0.12 23
Rizhao 0.15 2 0.00 1
Wuhan 0.32 29 0.43 43
Changsha 0.30 24 0.14 27
Guangzhou 0.35 35 0.00 1
Shenzhen 0.08 1 0.00 1
Zhuhai 0.27 16 0.01 7
Foshan 0.27 15 0.01 6
Jiangmen 0.33 31 0.02 8
Zhaoging 0.24 11 0.00 1
Huizhou 0.23 10 0.05 16
Dongguan 0.24 13 0.03 12
Chongging 0.47 46 0.36 41
Chengdu 0.41 45 0.38 42
Xi’An 0.38 41 0.44 44
Xianyang 0.31 26 0.24 34
Lanzhou 0.30 22 0.33 38
Yinchuan 0.16 4 0.04 14
Urumgi 0.27 14 0.34 39
Correlation - - 0.51 0.54

energy use (0.04), industrial sulfur dioxide emissions (0.11), and dust
(soot) emissions (0.08). Combined, these factors constitute 79.31 % of
the aggregate inefficiency score (0.29). Considering urban agglomera-
tions, the PRDA in South China is marked by notable inefficiency with a
score of 0.24, while the NCUA exhibits the most substantial deficiency in
environmental performance with a score of 0.30.

The average annual productivity gains in the industrial sector
observed for TUAs cities across 2006-2016 are 2.6 %. Results suggest
the joint contribution of industrial energy use and pollutants were 1.8 %
(with the performance of sulfur dioxide emissions prominent, 0.9 %). As
regards the source-decomposition, productivity growth is mainly driven
by technical progress. Specifically, the overall average catch-up rate was
—0.2 % in China’s TUAs but lagged behind frontier movements (TP,
2.90 %). This suggests frontier shifts are superior to catch-up effects.
Furthermore, the technical productivity change tended to stagnate (0,
on average), indicating that production possibilities are limited with
fixed inputs and outputs. This indicates further structural shifts are
required in the economies of China’s 45 TUAs from 2006 to 2016 to
increase production. The results show that the catch-up effect (EC, —0.2
%) in TUAs cities across 2006-2016 is negative, which can be attributed
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to industrial energy use (E) and industrial capital inputs (K) (both —0.2
%). Thus, technology transfer from the frontier to lagged regions is
encouraged for E and K. In addition, efficiency change (EC) can further
be broken into pure efficiency change (PEC) and scale efficiency change
(SEQ). As for source-decomposition, PEC contributes to the EC gains (0.3
%), whereas SEC pushes the EC regression (—0.6 %). The results show
that frontier movement (TP) in TUASs cities across 2006-2016 is 2.9 %,
which can be attributed to industrial SO5 (E, 0.9 %) and industrial labor
force (L, 0.8 %). Rapid technical progress can be attributed to pure
technical progress (PTP, 2.2 %), exceeding scale change of environ-
mental technological progress (SCTP, 0.6 %).

Regarding regional analysis, NUA demonstrates significant produc-
tivity gains of 4.6 %, while PRDA shows comparatively milder produc-
tivity growth of 1.5 %. When considering efficiency change (EC), NUA
continues to lead with gains of 0.8 %, while both YRDA and PRDA lag
with declines of —0.8 %. Notably, frontier shifts in NUA and YRDA are
particularly prominent, with improvements of 3.8 % and 3.5 %
respectively. The results indicate that YRDA and PRDA, as the most
developed urban agglomerations, have improved their environmental
productivity mainly through expanding the frontier (technological
innovation). Conversely, NUA, as the least developed urban agglomer-
ation, relies on catch-up effects. The positive EC in NUA suggests the
existence of slight efficiency diffusion and spillover, but its further
environmental productivity gains are constrained by high total pollu-
tion. By comparing productivity growth under the constraints of energy-
and emission-related variables, this work has clustered the 45 cities into
five groups and assigned source or end-of-pipe control policies for each
group. Furthermore, it is important to note that the methodology
introduced in the paper has certain limitations. The separate consider-
ation of natural and managerial disposability for input-oriented vari-
ables, particularly for the labor force, may lead to an overestimation of
the GIE scores and productivity gains. Similarly, managerial dispos-
ability could underestimate the GIE scores and productivity growth
associated with industrial energy use and industrial capital inputs. These
shortcomings will be the focus of our future research.

The findings presented in this study hold significant implications for
industry, policymakers, and the advancement of UN SDGs related to
sustainable cities and climate action (e.g., SDG 11 & 13). The high-
lighted need for technology transfer, particularly in renewable energy
and capital investment, presents a clear path for industry regulation and
policy interventions. Governments and regulatory bodies can incen-
tivize such transfers through targeted subsidies, tax breaks, and
collaborative programs between developed and developing regions
within the TUAs. Furthermore, the study’s quantification of the envi-
ronmental productivity gains achievable through improved energy ef-
ficiency and emissions reductions (e.g., SO2) provides concrete targets
for policymakers. By setting stringent yet achievable environmental
standards and promoting their enforcement, policymakers can foster a
more sustainable and efficient industrial sector across the TUAs, ulti-
mately contributing to broader *Carbon Peak’ and ’Carbon Neutrality’
goals while promoting responsible ESG practices."

6.2. Policy implications

Heterogeneous environmental performance has been observed
among the 43 selected cities. To derive tailored policy implications, this
work has categorized all regions into four urban agglomerations. The
North China Urban Agglomeration is distinguished by the poorest
environmental performance, which has been attributed to obsolete
production capacities [71]. Prioritizing the resolution of dust (soot)
pollution through an enhanced joint control system within these cities is
imperative, given its relative underperformance. From the standpoint of
individual variables, noteworthy inefficiencies have been identified in
SO, emissions, largely owing to postponed enforcement of national
regulations targeting this contaminant. Despite the introduction of the
Rules on the Prevention and Control of Air Pollution within our sample,
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aiming to diminish coal consumption and regulate emissions, there re-
mains a margin for advancement. The handling of NOx emissions also
requires additional regulation, as their performance lags behind other
factors. This research suggests that environmental performance shows
improvement in later stages as opposed to early stages. Consequently,
rigorous application of sustainability objectives is compulsory, espe-
cially in locales such as Taiyuan City, to elevate the general environ-
mental standard. Moreover, collaborative inter-regional efforts are vital
to the efficacy of policies intended to mitigate atmospheric pollution,
recognizing that distinct pollution profiles exist within the four urban
agglomerations. In the North China Urban Agglomeration, fostering the
use of clean industrial energy and improving workforce quality are
essential. For the Yangtze River Delta and Pearl River Delta Agglomer-
ations, emphasis should be placed on cultivating a sustainable invest-
ment framework and fortifying labor quality during advanced stages.
Consequently, our findings indicate that end-of-pipe measures surpass
source control in bolstering environmental performance at the city level
across these urban clusters.

Drawing on the analysis of GE-TFP performance in relation to inputs
(energy consumption and industrial investment) and outputs (SO2
emissions and dust (soot)), this work has categorized all regions into five
distinct regulatory trajectories (as shown in Table 3): Type I regions
showcase growth in environmental performance across both inputs and
outputs, with a notable lead in input metrics. Notable cities like
Shanghai, Nanjing, and Qingdao exemplify this category and can act as
benchmarks for enhancing input performance via proactive source
control measures. Type II regions similarly exhibit an upsurge in pro-
ductivity concerning both inputs and outputs—but with a pronounced
edge in output metrics. For these regions, it is essential to highlight the
importance of end-of-pipe regulations by taking a cue from exemplary
models. A case in point is Beijing’s adoption of the Regulations on the
Prevention and Control of Air Pollution in 2013, which has focused on
total emissions control and consequently led to commendable advances
in environmental performance. Conversely, Types III, IV, and V depict
various forms of waning environmental performance. Type III cities
should align their environmental policymaking with Type II's successful
strategies, whereas Type IV should look to replicate Type I's effective
measures. Type V regions, which suffer from stagnated or regressive
productivity in both inputs and outputs, demand a thoroughgoing policy
overhaul that equally emphasizes cleaner energy adoption and emission
curtailment, ensuring balanced attention to both end-of-pipe and source
control tactics. The decomposition analysis yields actionable insights for
cities to select the most efficacious route toward environmental
enhancement. For regions recording positive technical evolution but a
decline in environmental efficiency, this work advocates for the
emulation of superior management practices and the adoption of tech-
nology transfer in clean production from more progressive areas. Such
integration is anticipated to substantively boost environmental perfor-
mance. Conversely, for regions encountering a regression in technical
progression despite gains in environmental efficiency, emphasis should
be placed on acquiring desulfurization and denitrification systems,
along with cleaner production technologies. Implementing these ini-
tiatives is expected to stimulate further environmental performance
improvement.

To broaden the implications of this work beyond local spheres, this
article proposes the development of a universal analytical framework
that can be adapted to varying geographic scenarios. Envisaging future
research that encompasses a multitude of cities internationally, further
analysis can perform a holistic evaluation of environmental efficiency
and performance on a global stage. By calculating environmental in-
efficiency scores and monitoring changes in environmental productivity
for each variable within an expansive range, this study has the potential
to set a worldwide standard for gauging environmental efficiency. A
meticulous decomposition analysis of productivity changes will
streamline the identification of the most impactful regulatory ap-
proaches, primarily deciding between source control and end-of-pipe
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solutions, for a global constituency. Cities around the planet are grap-
pling with distinct environmental challenges; hence, pinpointing the
most effective regulations must be tailored to the intricate nuances of
various urban ecosystems and governance structures. For such a uni-
versal exploration to be feasible, forging collaborations with interna-
tional bodies and leveraging comprehensive global datasets will be
indispensable. This concerted effort is anticipated to fortify our research
outcomes with practical implications for environmental policymaking
and performance metrics, casting influence not just within Targeted
Urban Areas (TUAs) but also catalyzing eco-conscious urban develop-
ment practices on a worldwide scale.

6.3. Limitations

Findings in this work appear to be intricately linked with various
exogenous policy shocks, such as regional environmental regulations,
mandatory environmental information disclosures, and international
trade conflicts. To ascertain the robustness of these associations, future
analyses should endeavor to construct an expansive framework that
encapsulates these external uncertainties. With respect to data sampling,
extending our analysis to encompass global manufacturing firms could
yield additional valuable insights. Furthermore, considering the
numerous enterprises that have adopted pollution mitigation measures,
it is imperative to devise a model capable of integrating the treatment
strategies employed by these firms, which should be a pivotal element of
subsequent research efforts.
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